

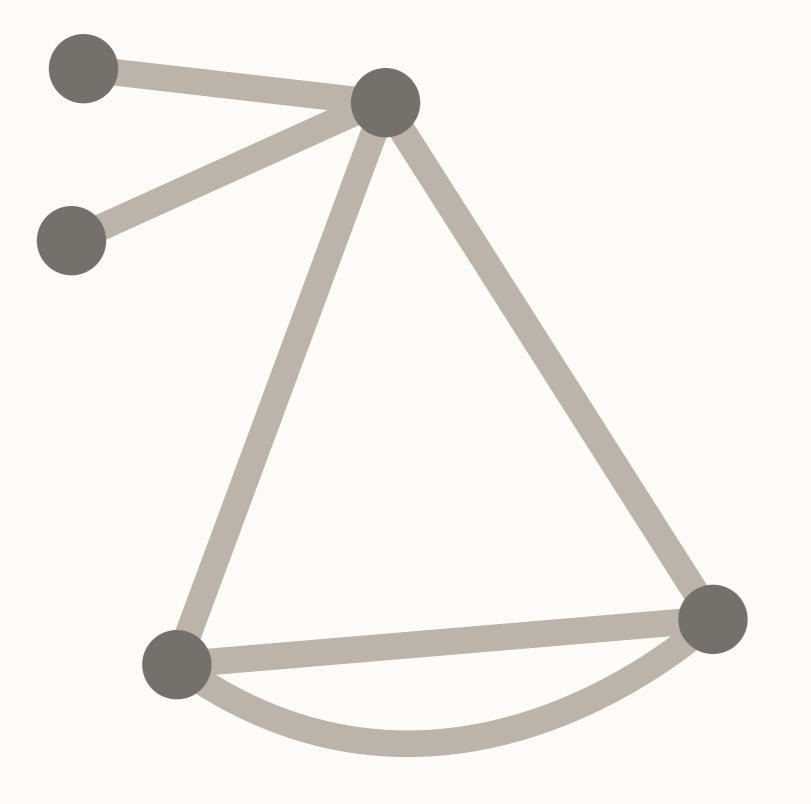
Summany

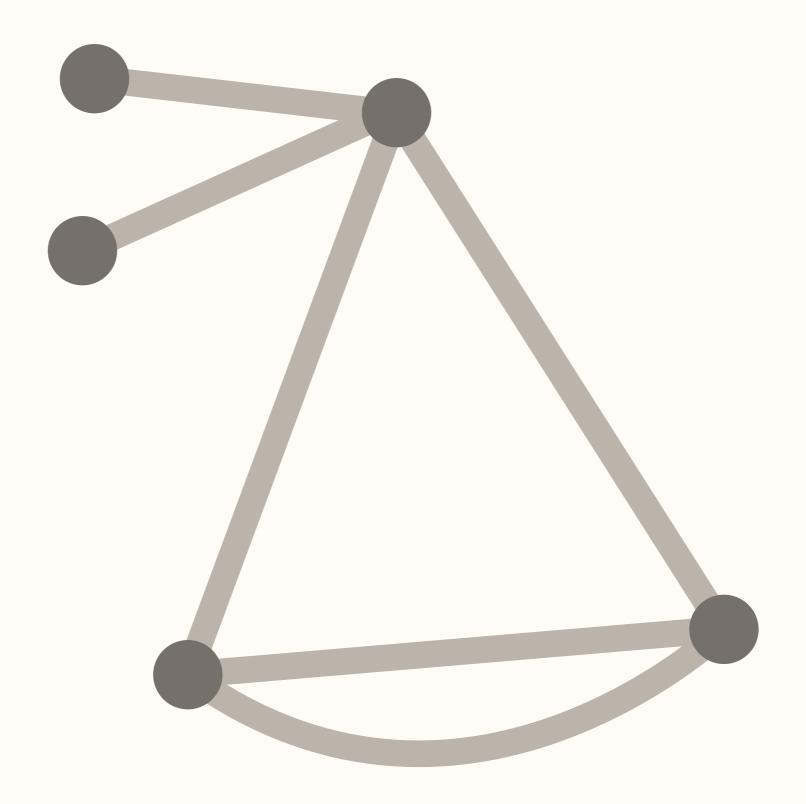
Maps and decorated maps

- 1. Bijection with quadrant tandem walks
 - a. The KMSW bijection
 - b. Plane bipolar posets
 - c. Plane bipolar posets by vertices
 - d. Transversal structures
- 2. Asymptotic enumeration

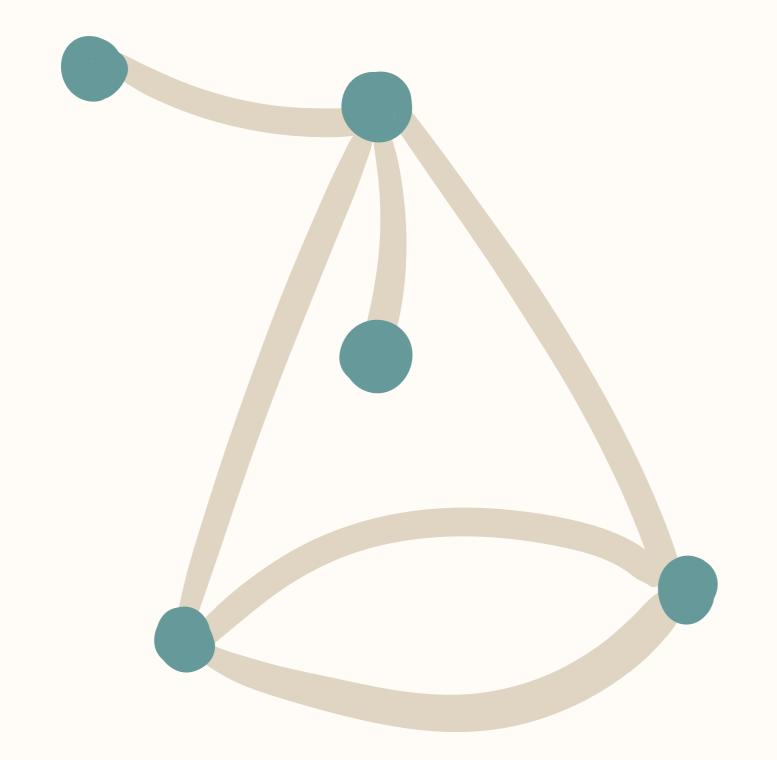
(Digression on plane permutations)

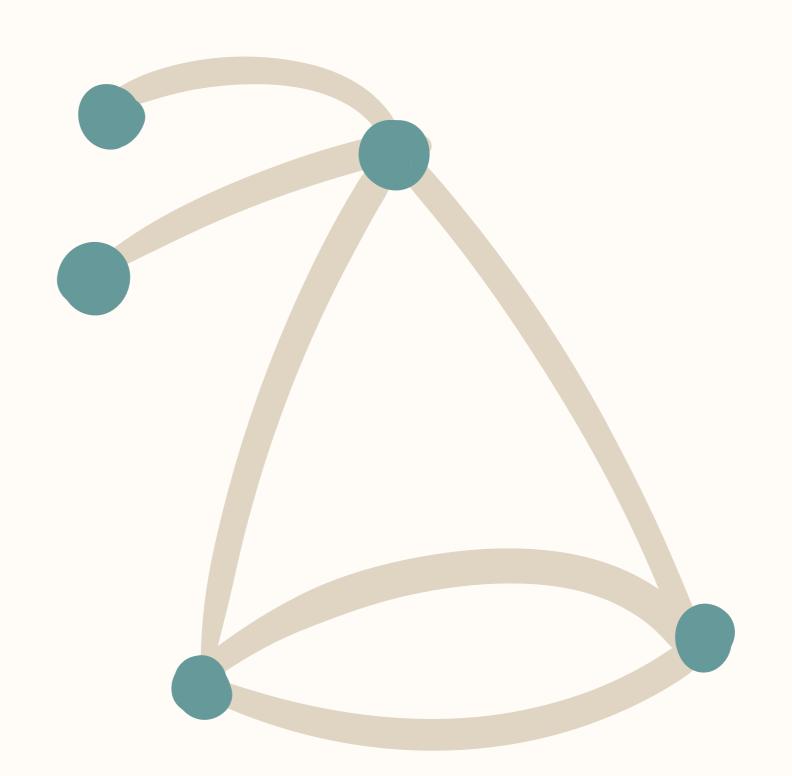
3. Generic transversal structures

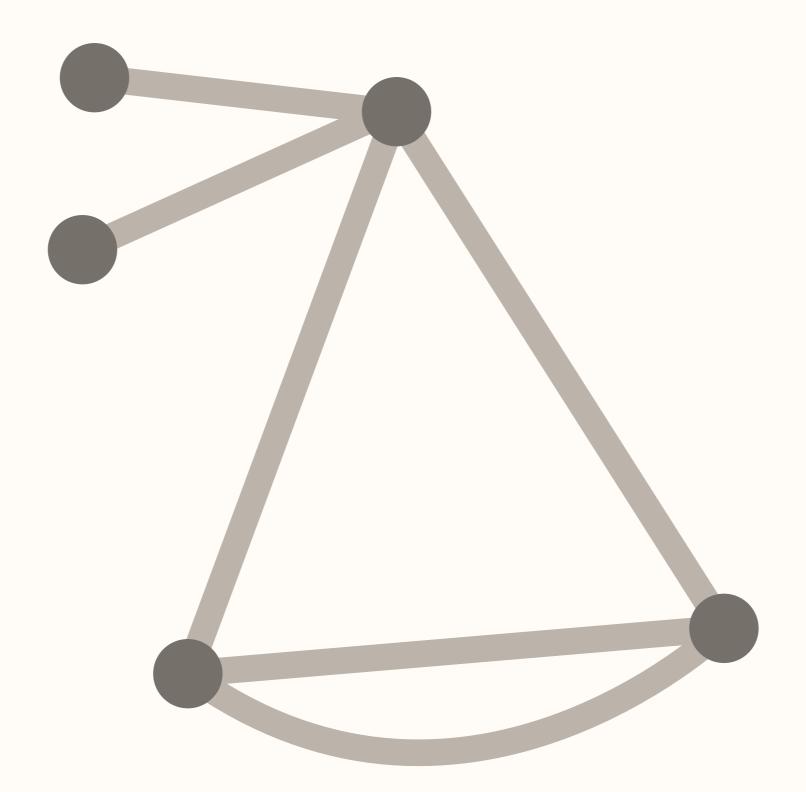




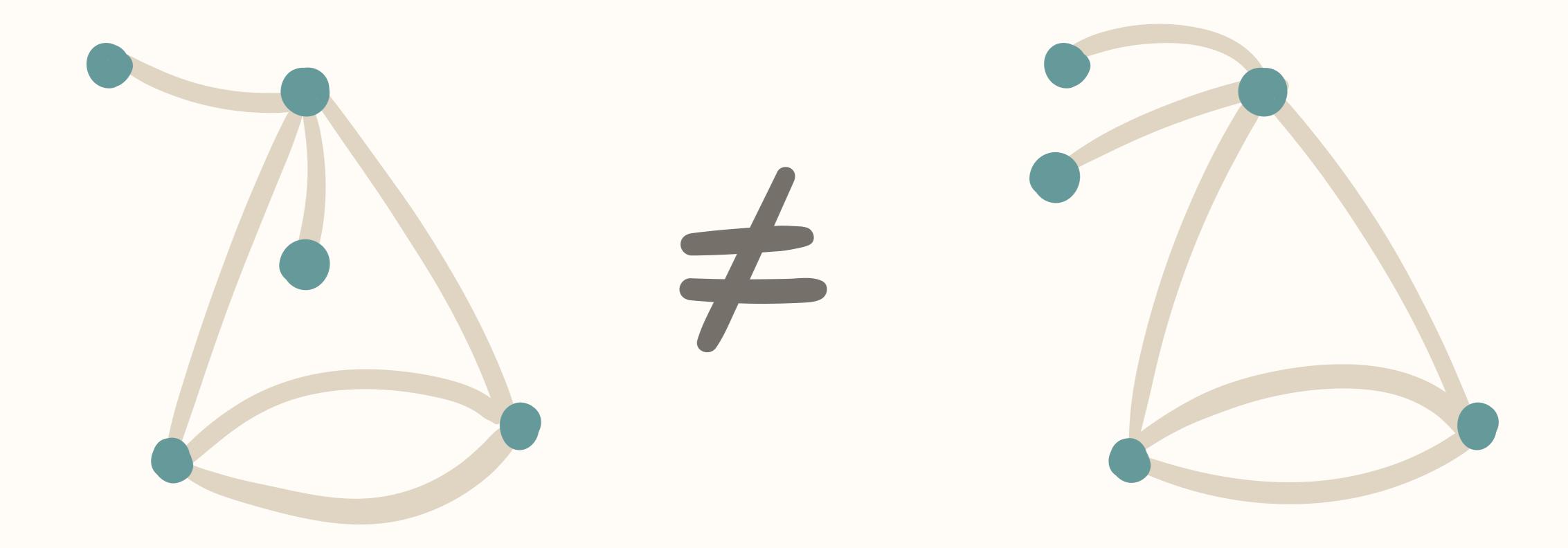
Maps embedding on the plane

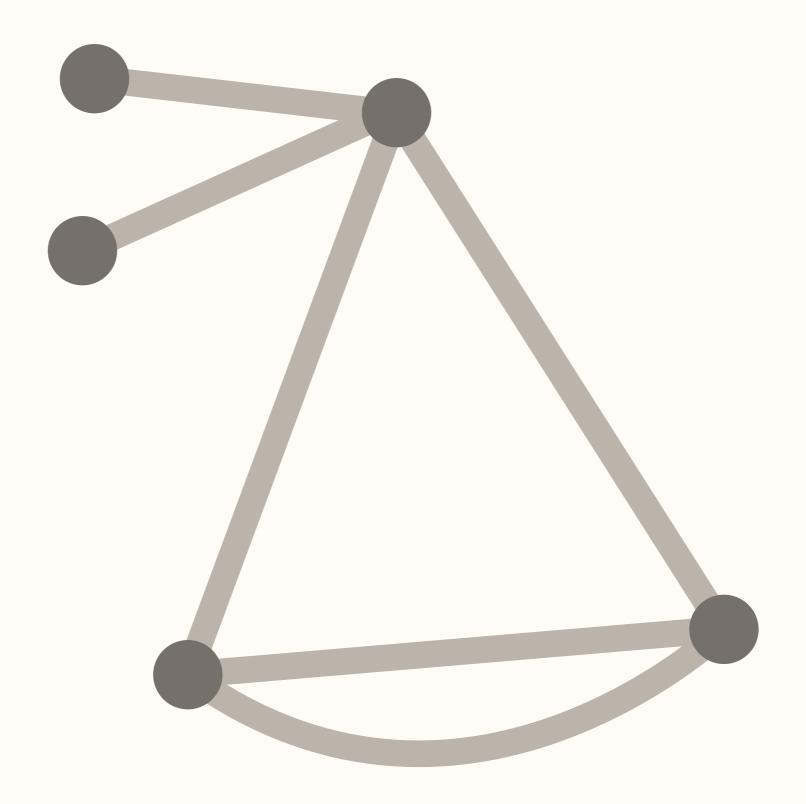




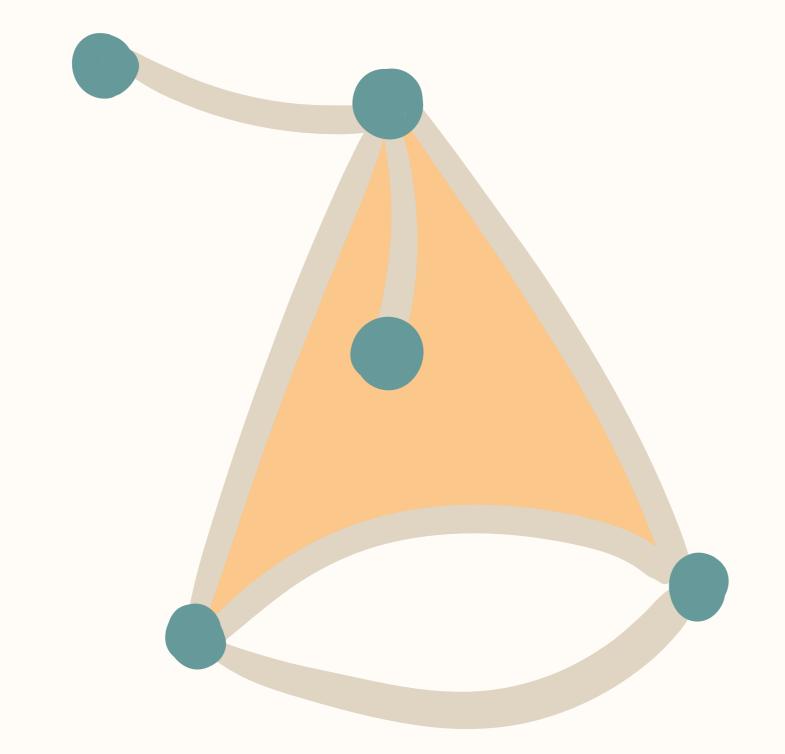


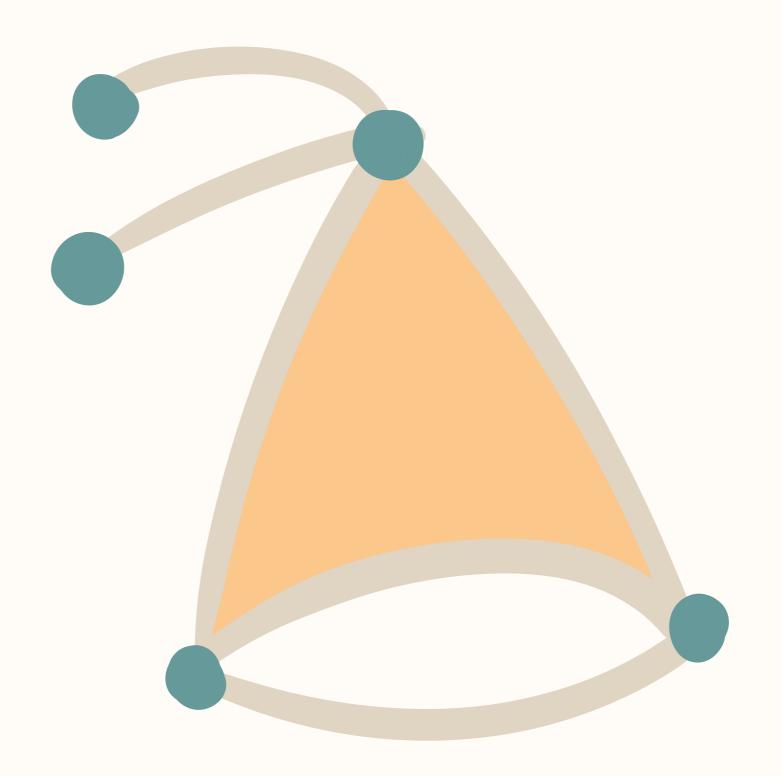
Maps embedding on the plane

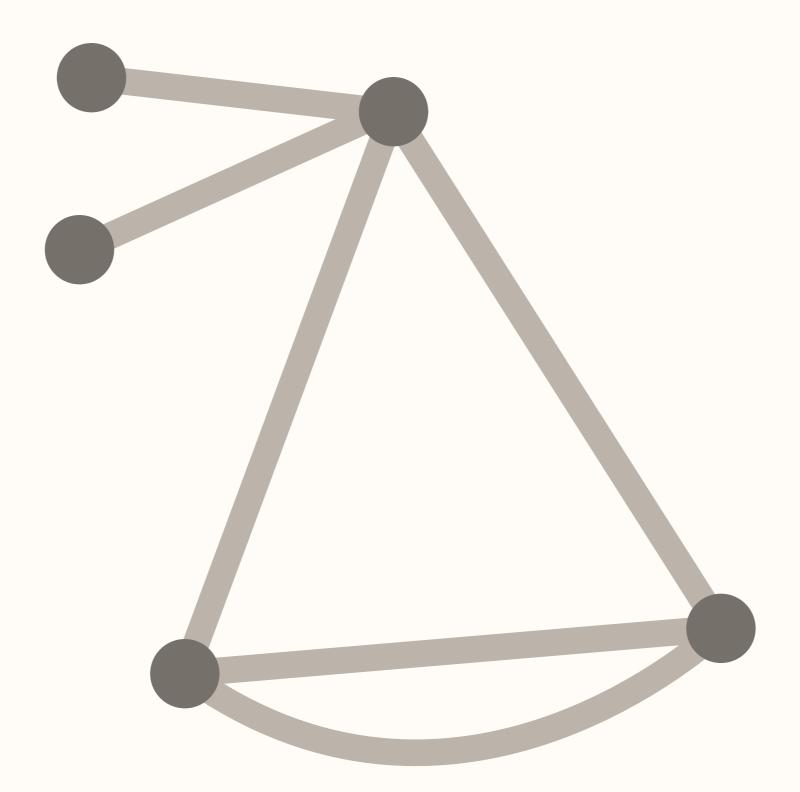




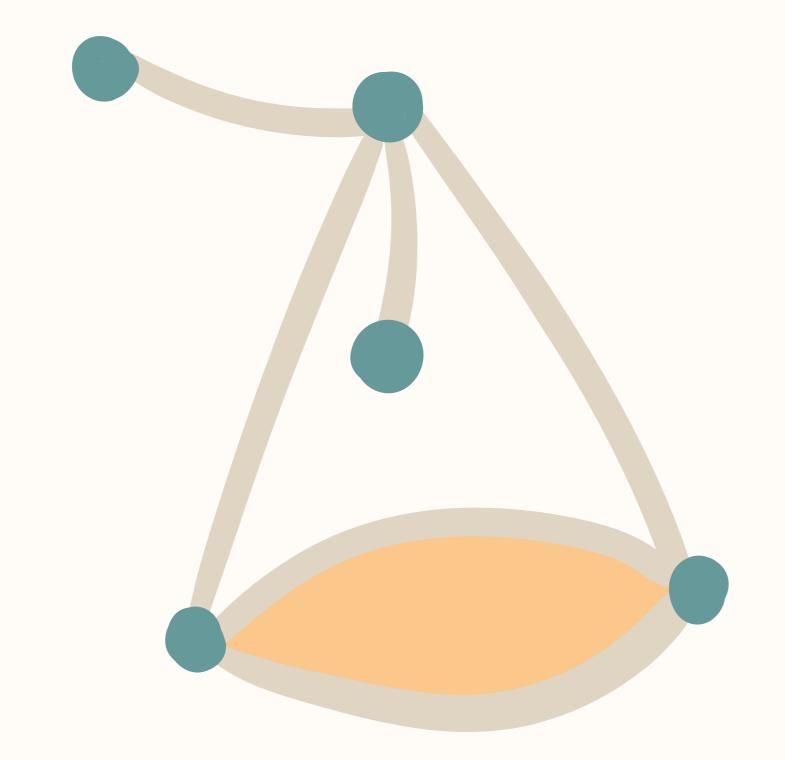
Maps embedding on the plane

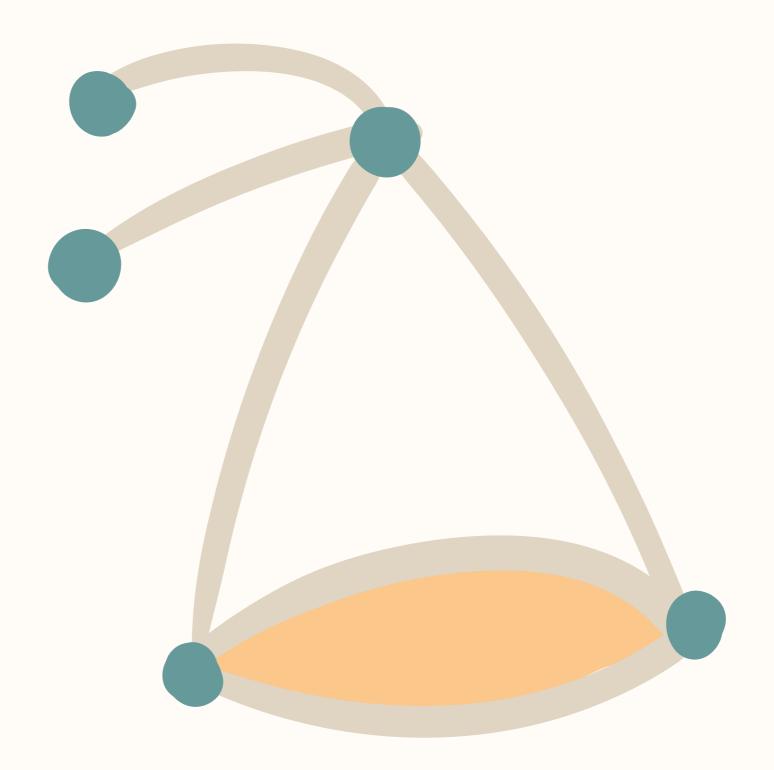


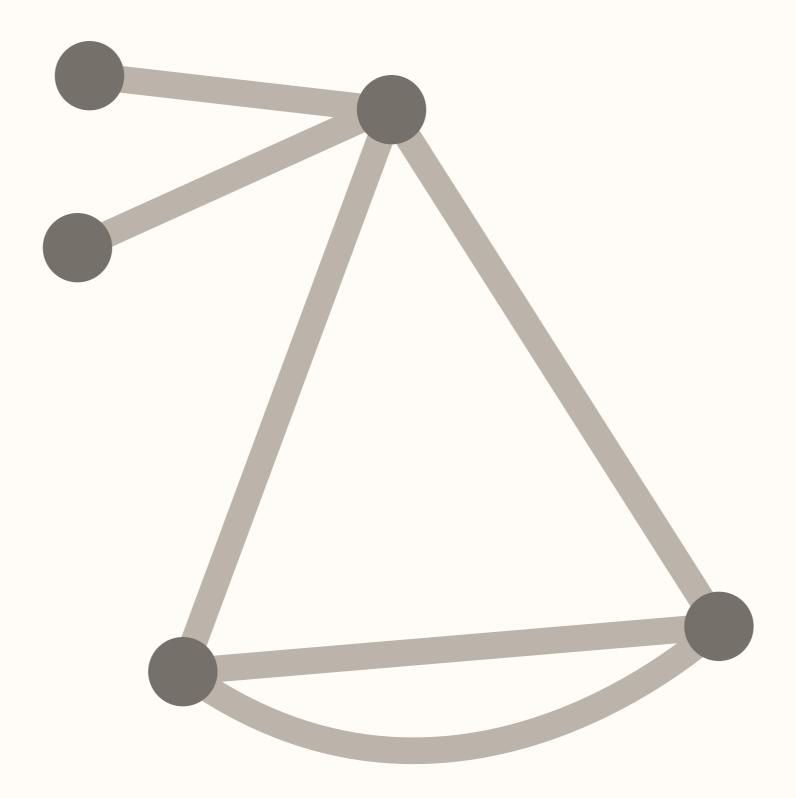




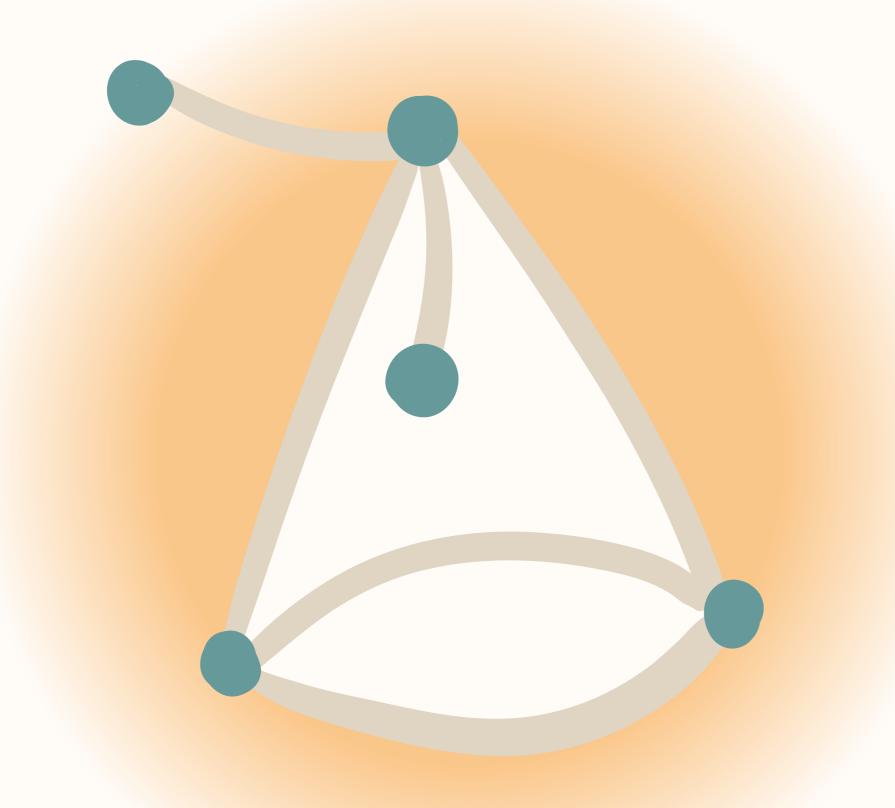
Maps embedding on the plane

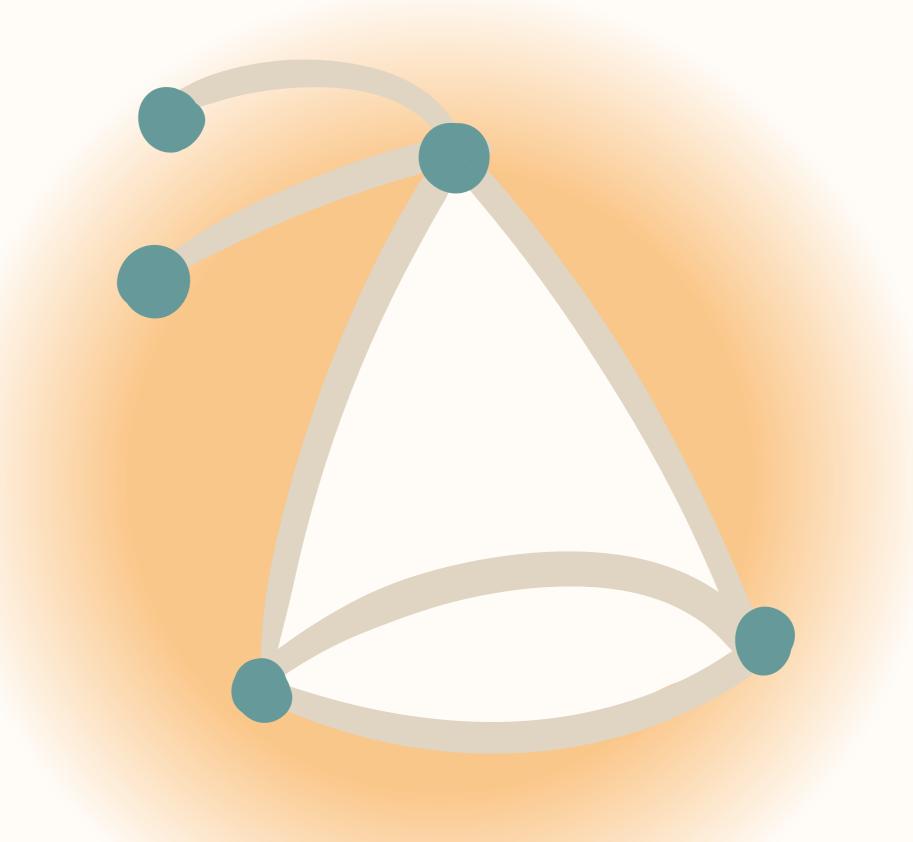






Maps embedding on the plane

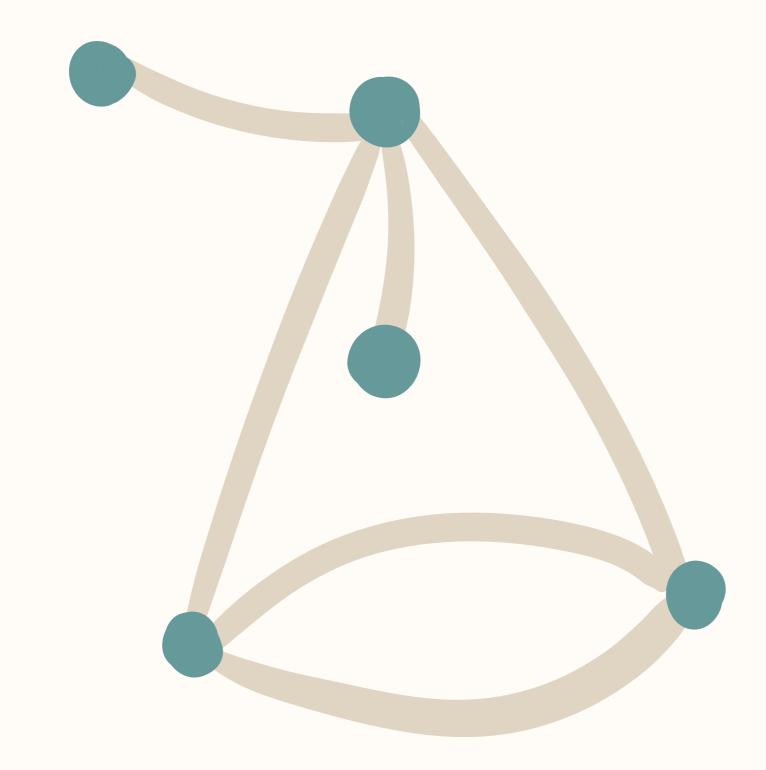


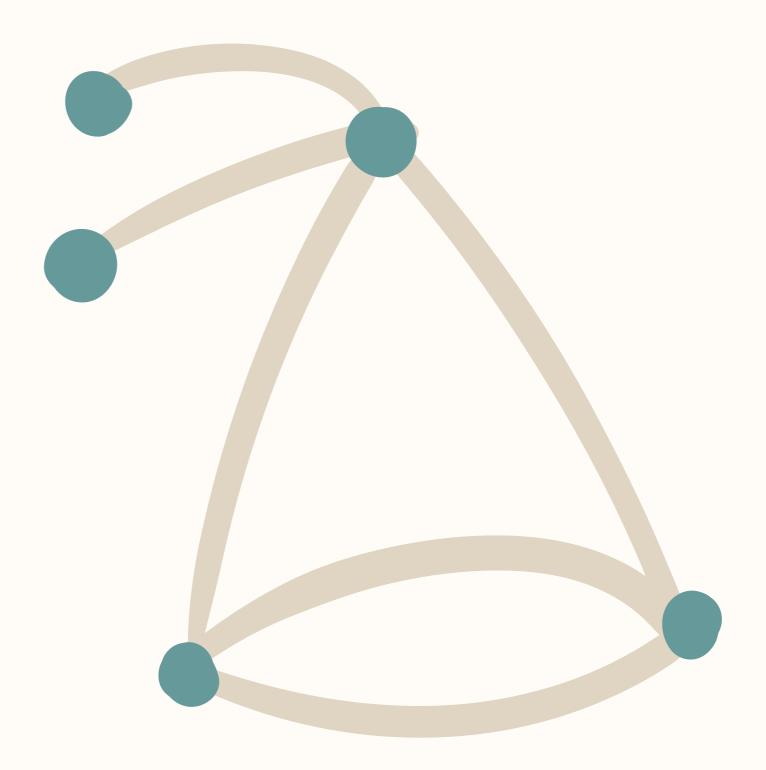


- → universal critical exponent

exponent# maps with $\times \gamma^n n^{-5/2}$ n edges

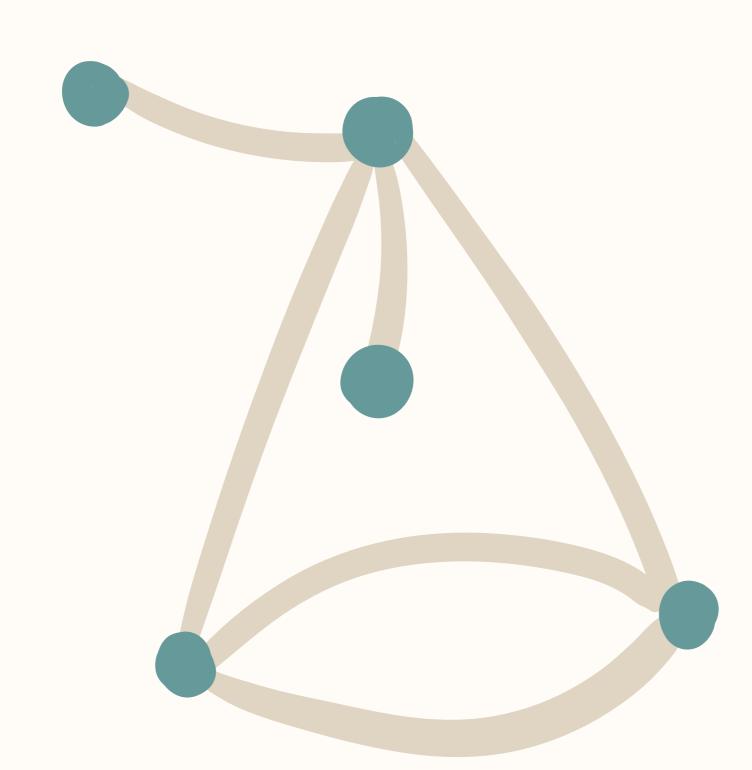
Maps embedding on the plane





maps with nedges : $\varkappa \cdot \gamma^n n^{-5/2}$

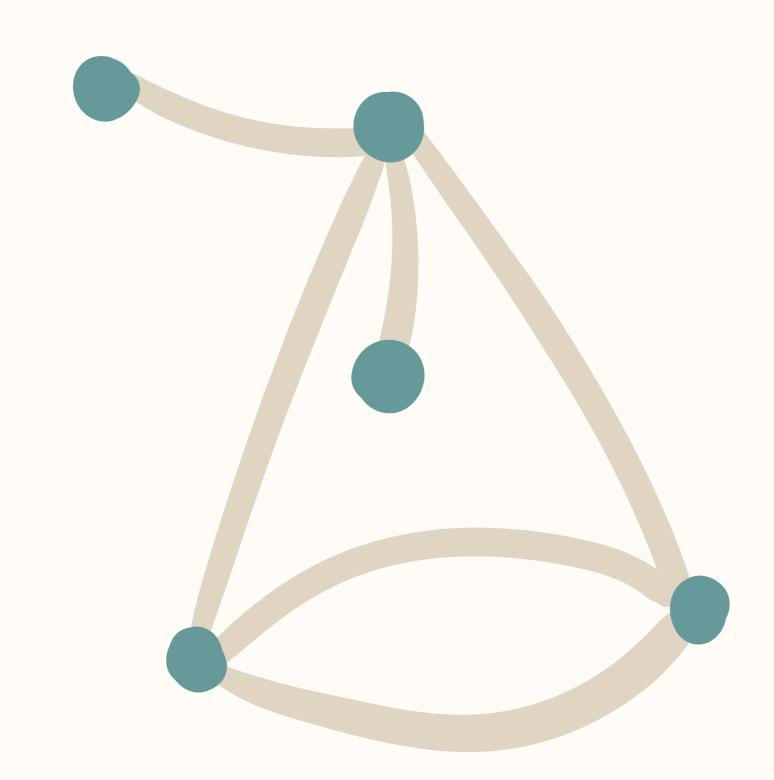
Maps embedding on the plane

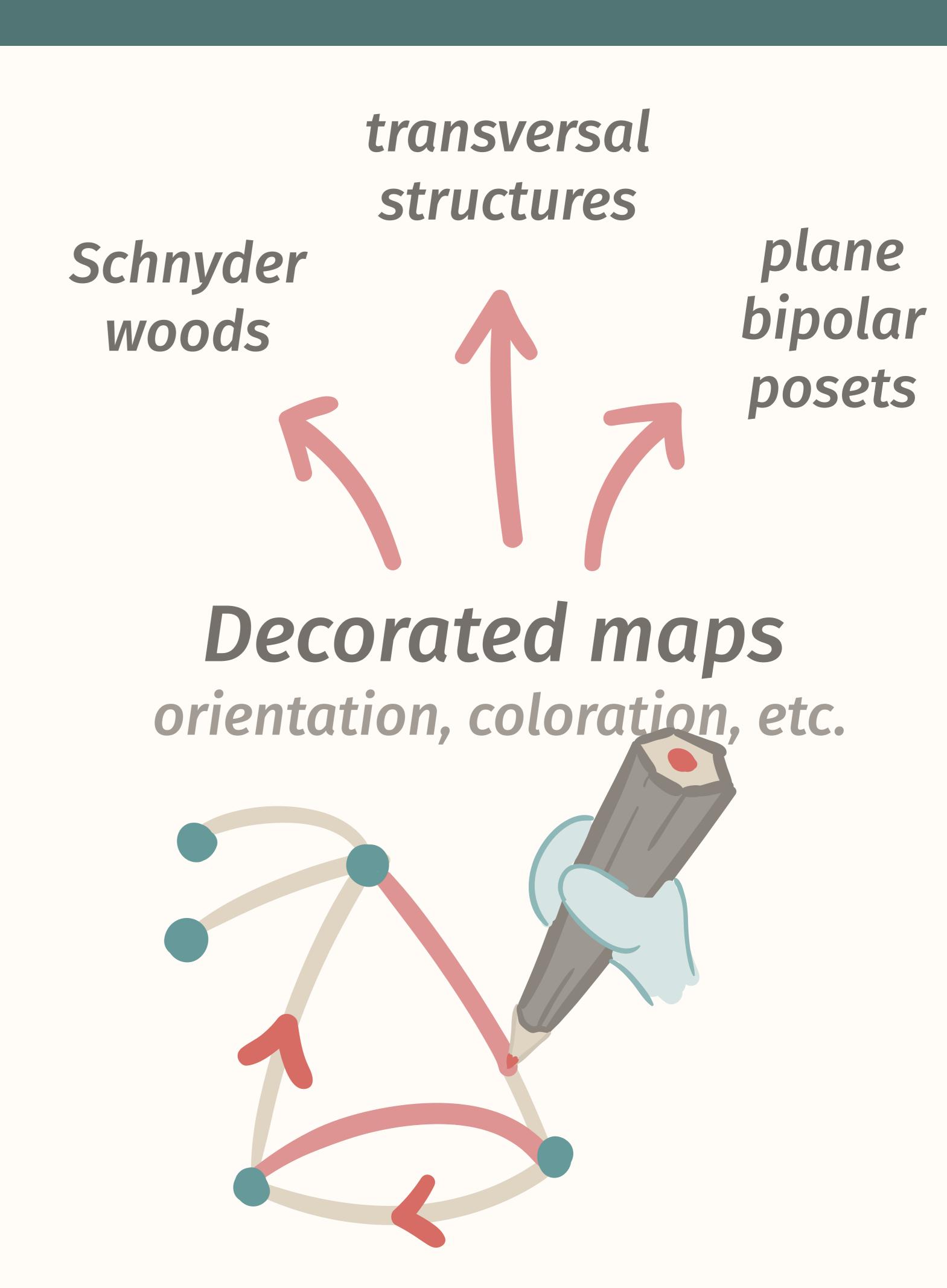


Decorated maps orientation, coloration, etc.

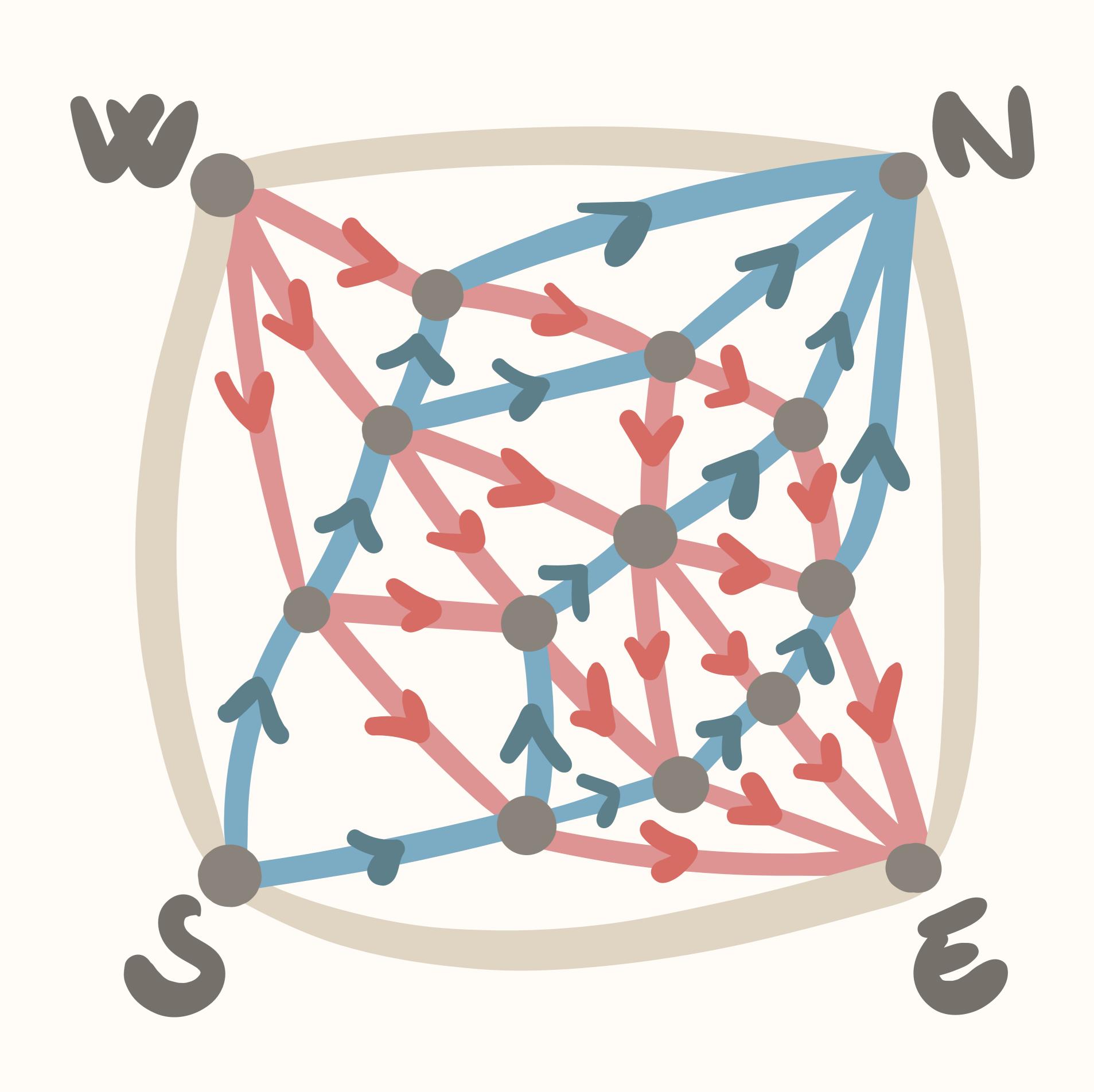
maps with $\times \gamma^n n^{-5/2}$: $\times \gamma^n n^{-5/2}$

Maps embedding on the plane

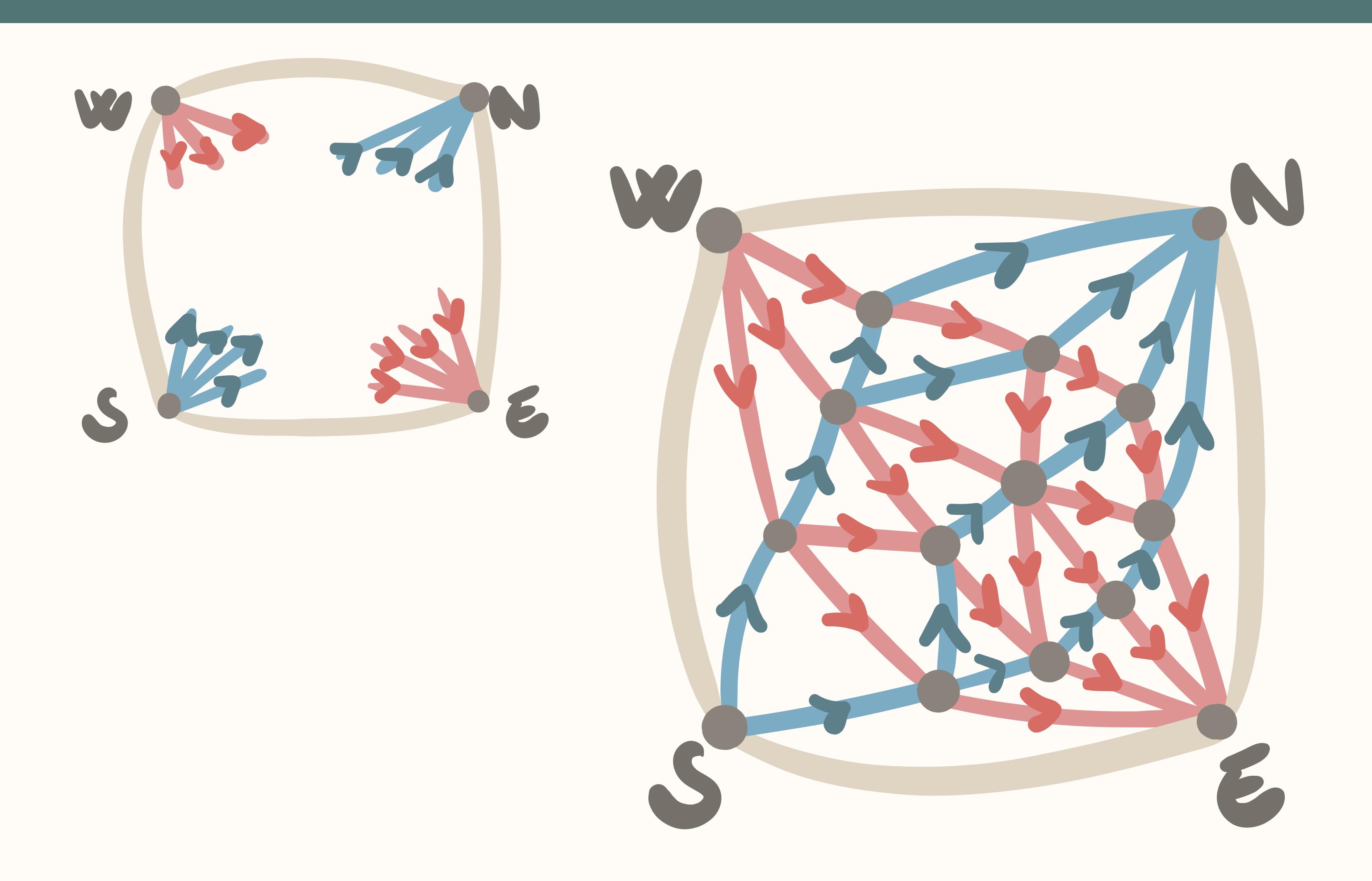




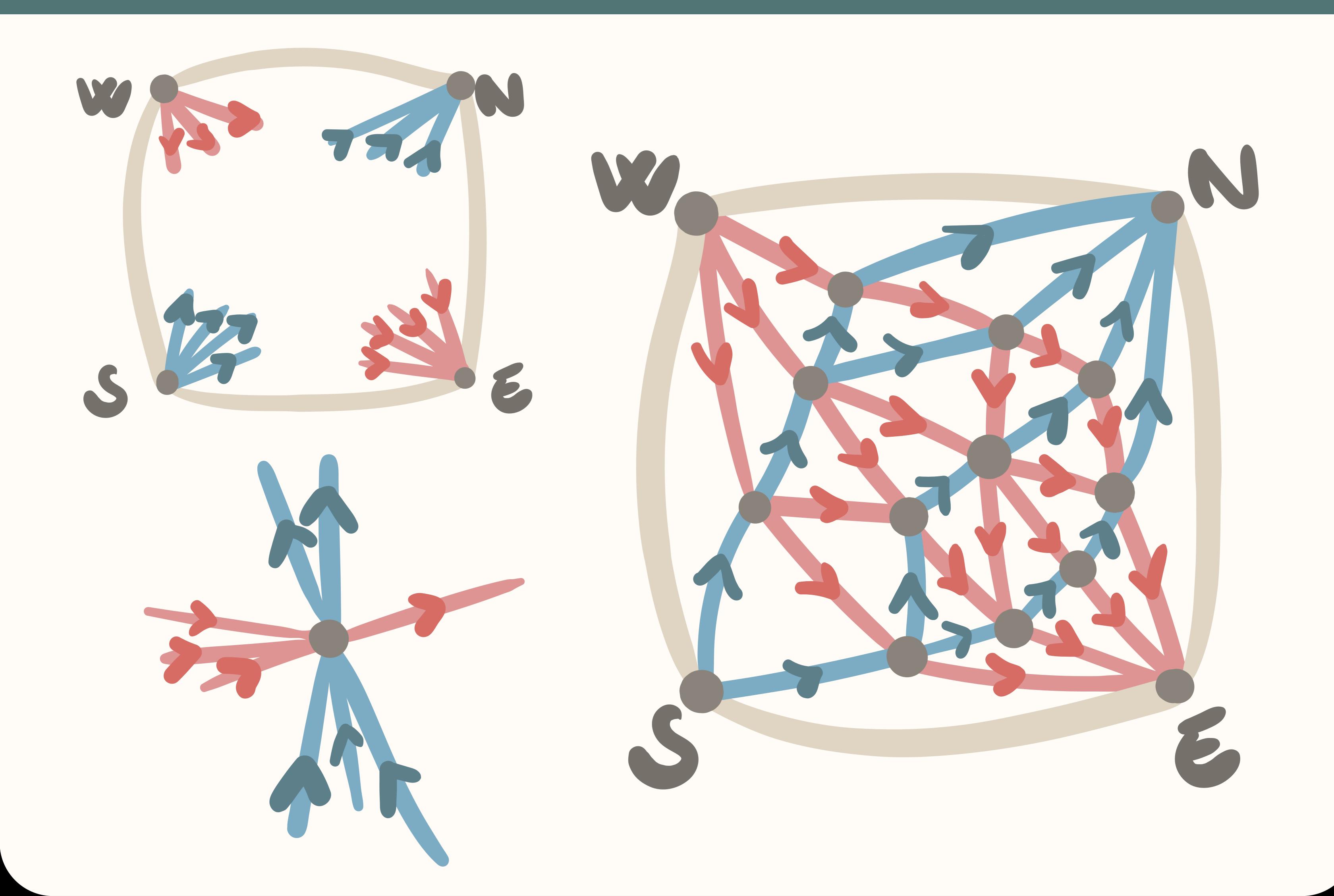
Transversal structures

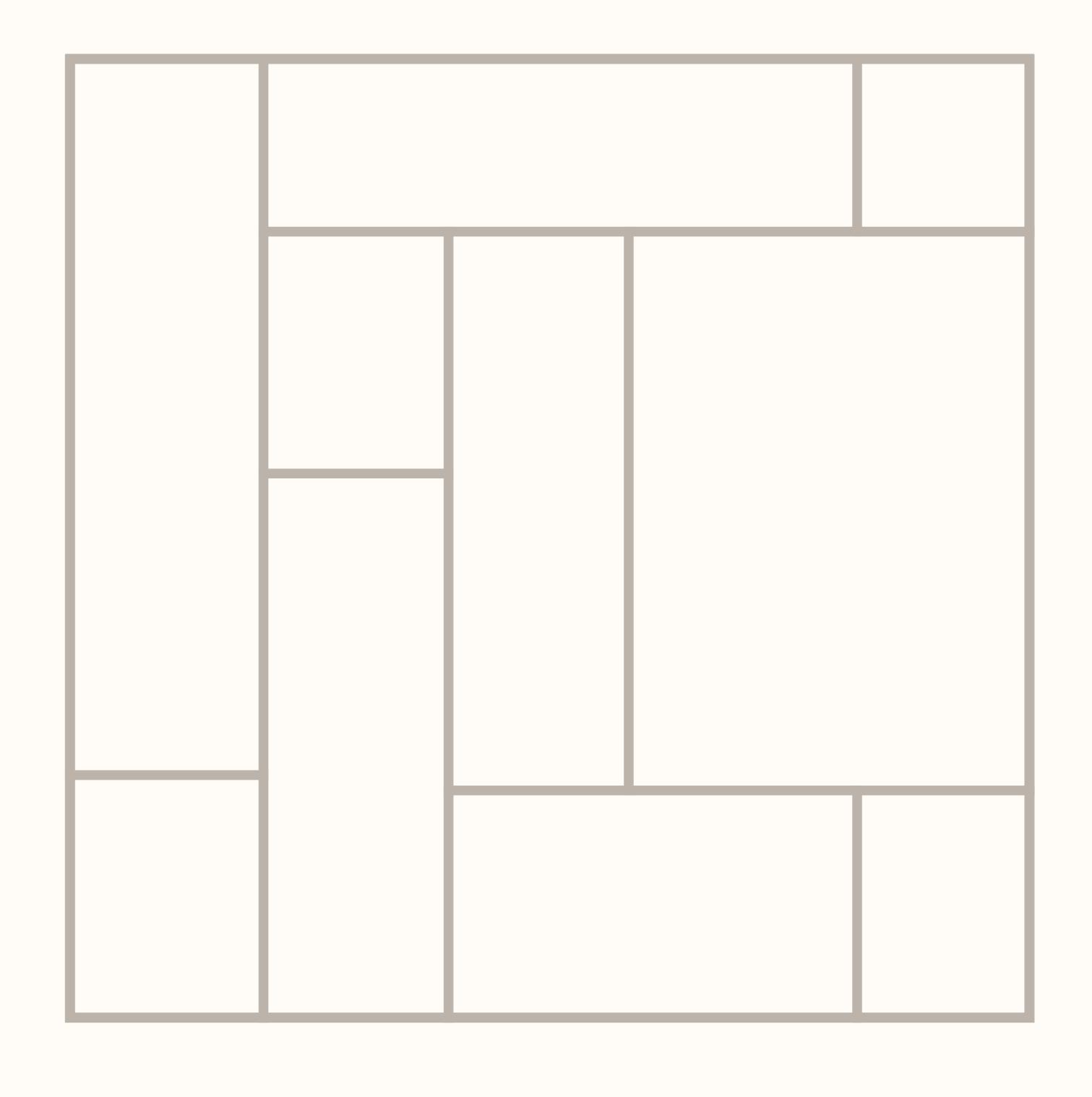


Transversal structures

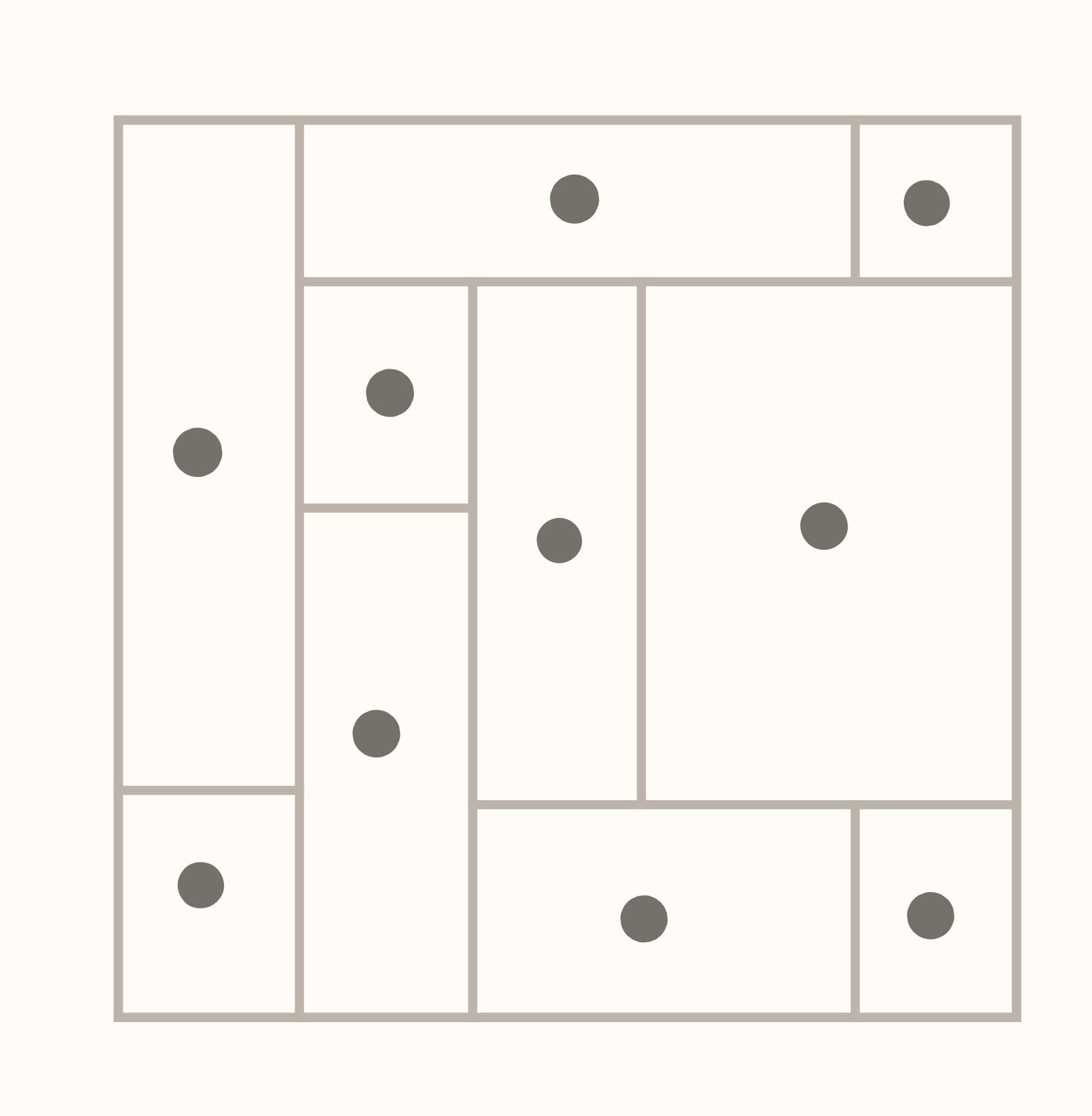


Transversal structures

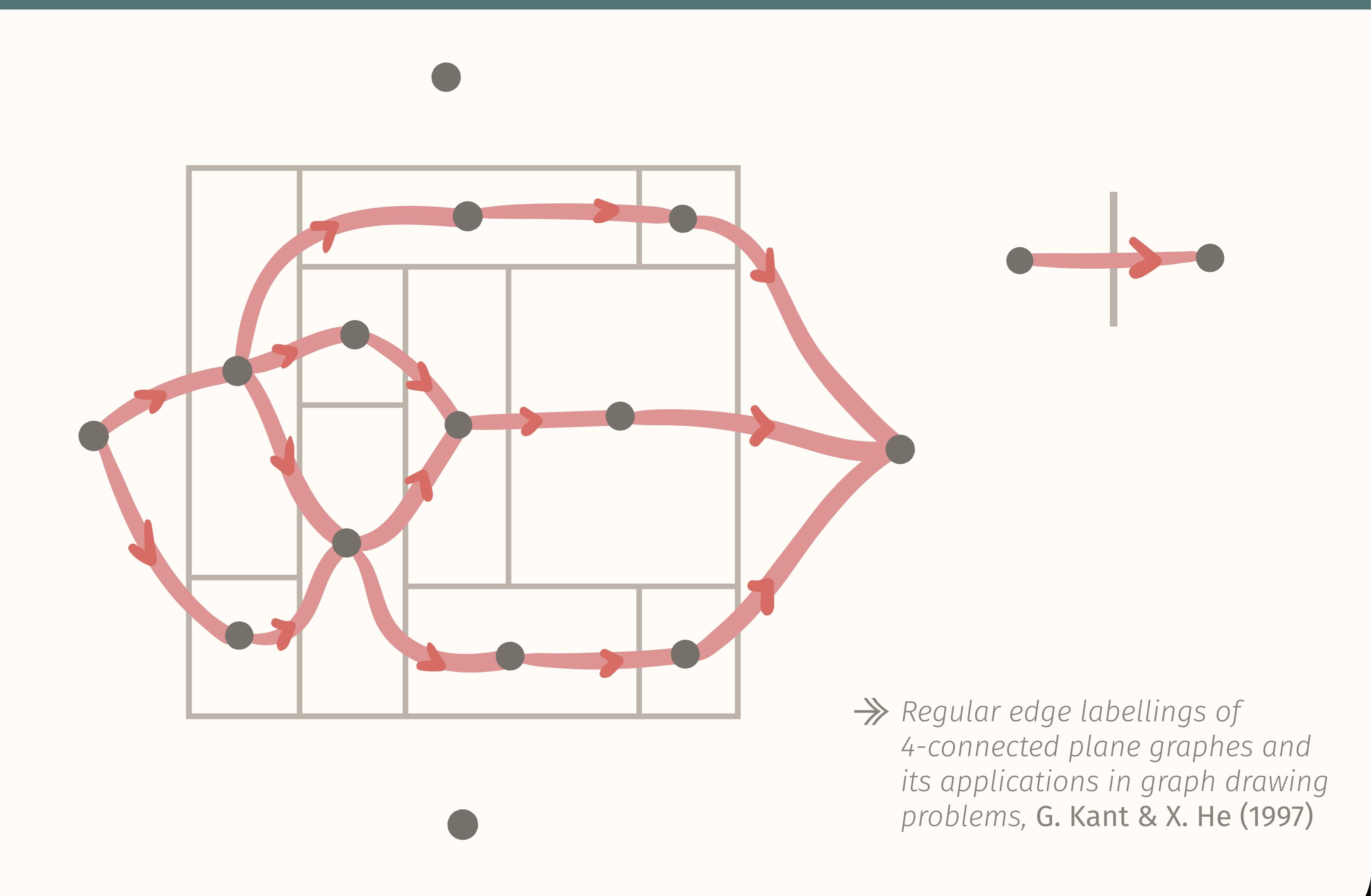


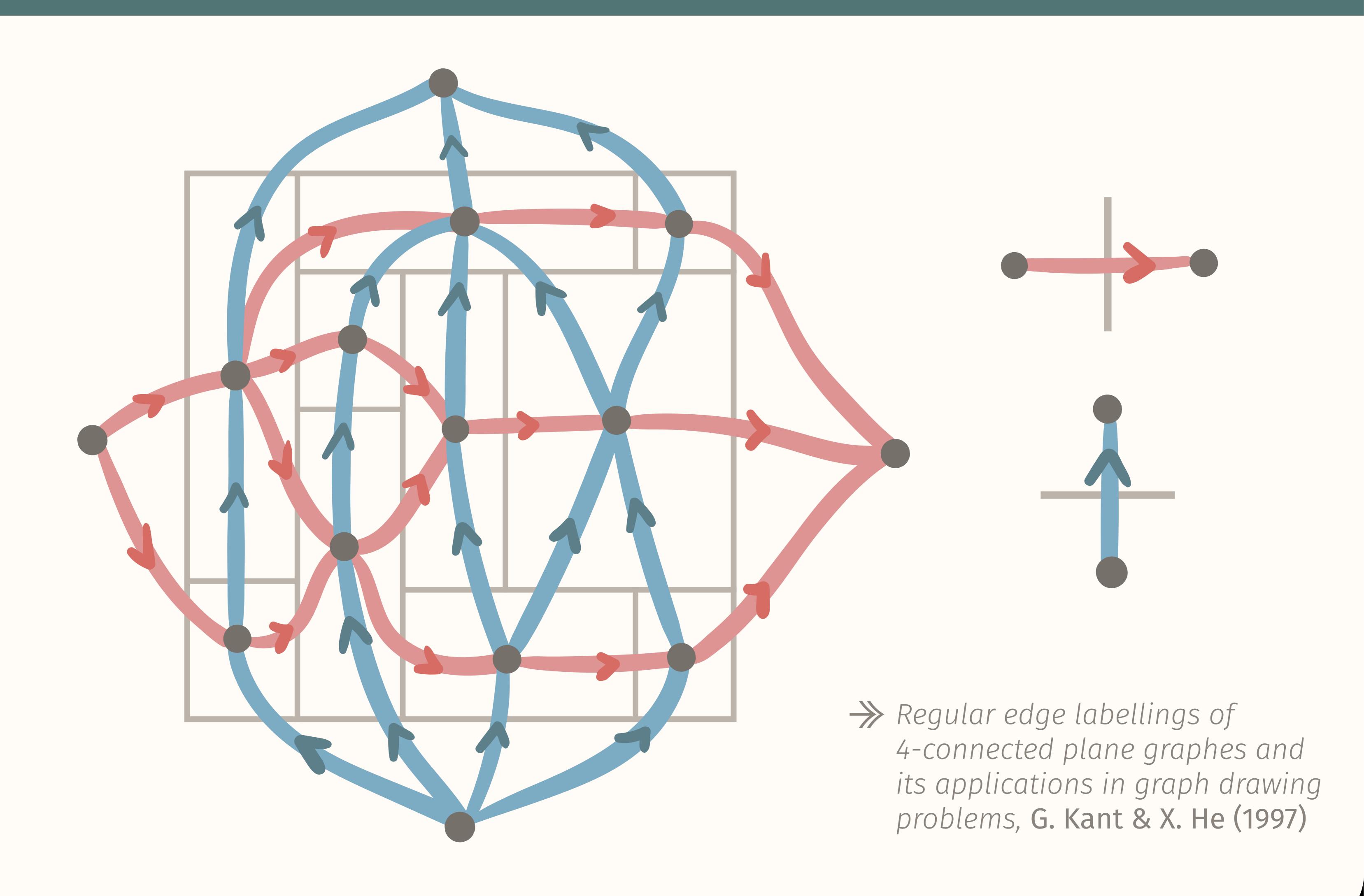


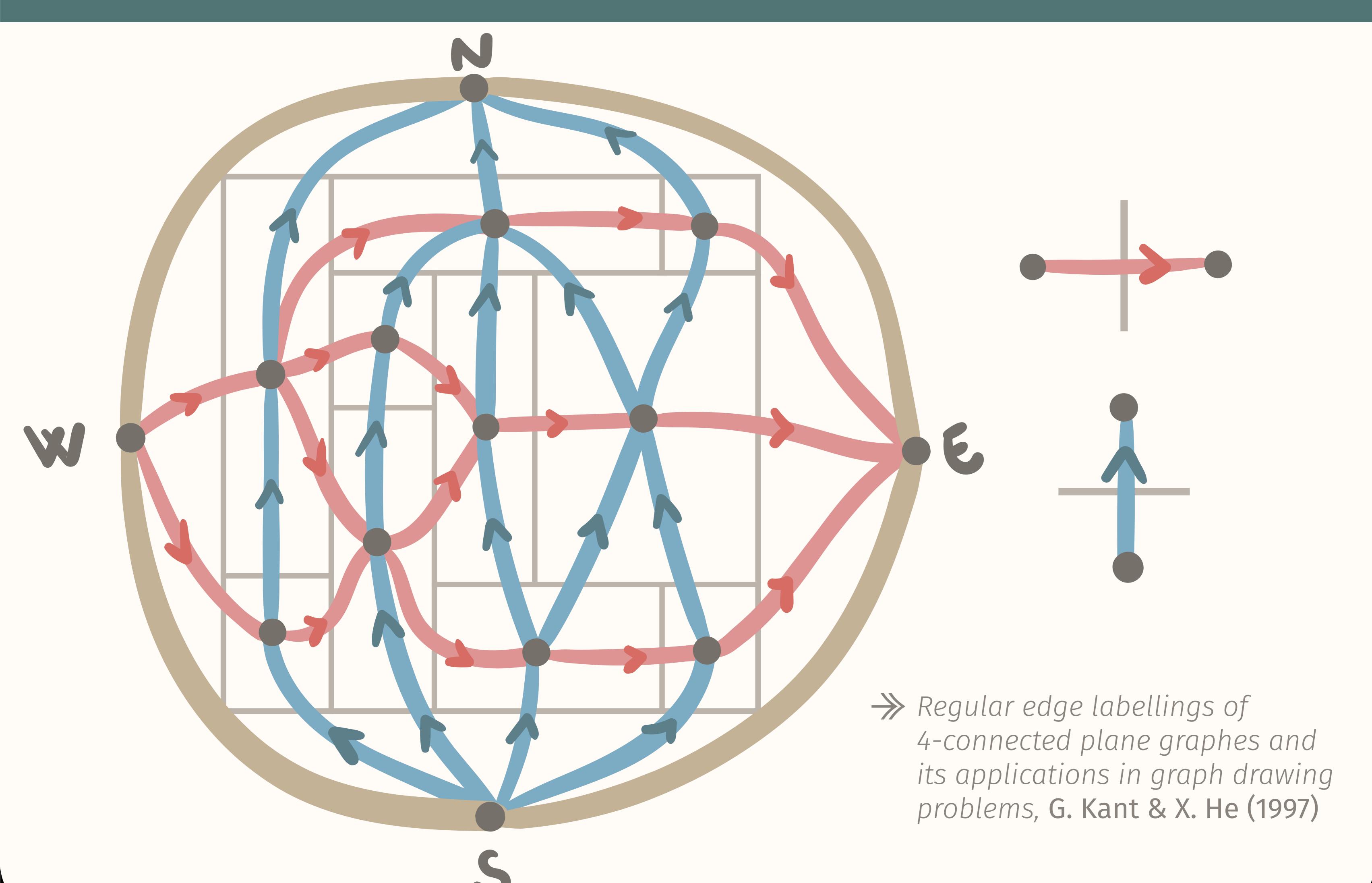
Regular edge labellings of 4-connected plane graphes and its applications in graph drawing problems, G. Kant & X. He (1997)



Regular edge labellings of 4-connected plane graphes and its applications in graph drawing problems, G. Kant & X. He (1997)







Summany

Maps and decorated maps

1. Bijection with quadrant tandem walks

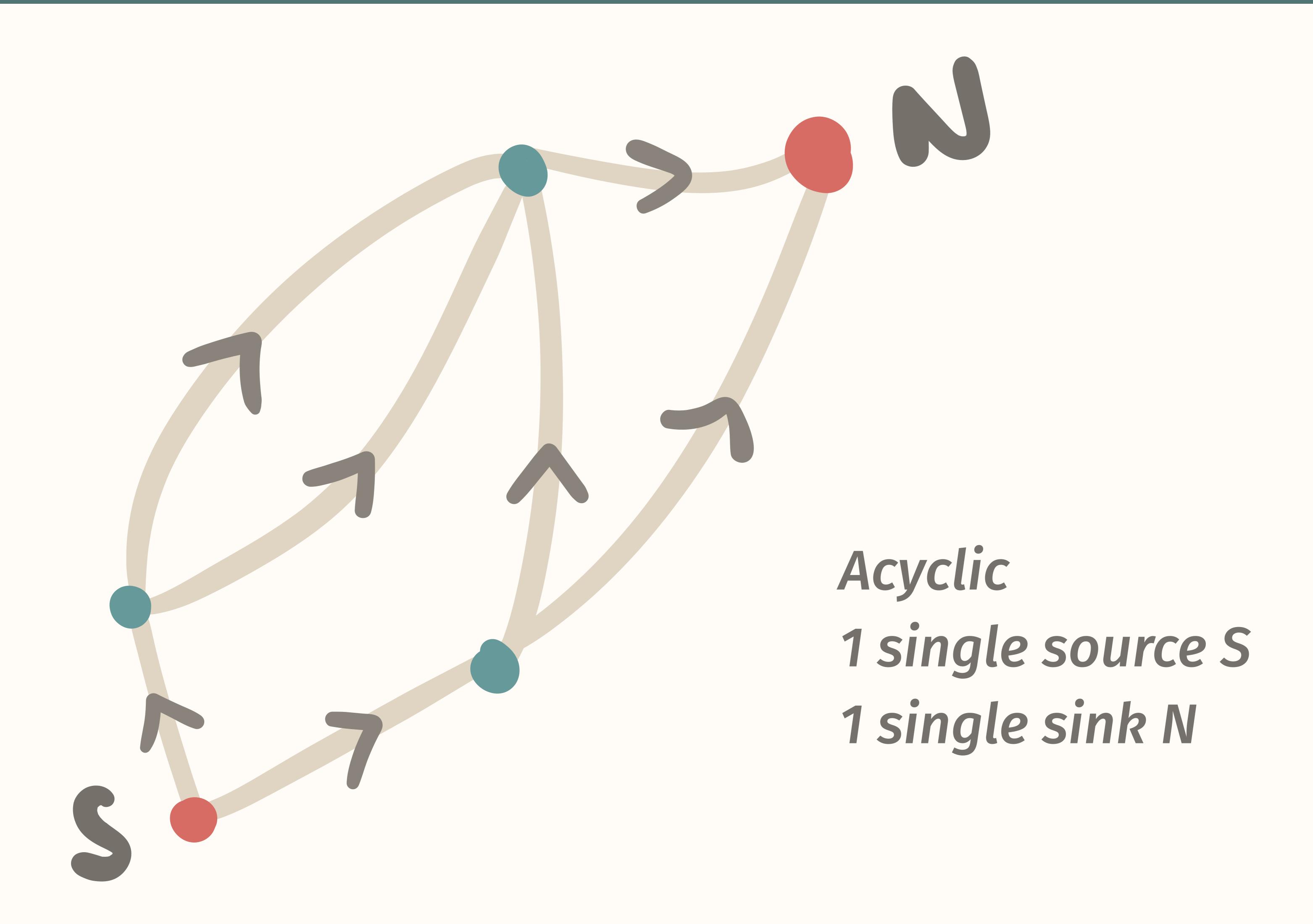
- a. The KMSW bijection
- b. Plane bipolar posets
- c. Plane bipolar posets by vertices
- d. Transversal structures

2. Asymptotic enumeration

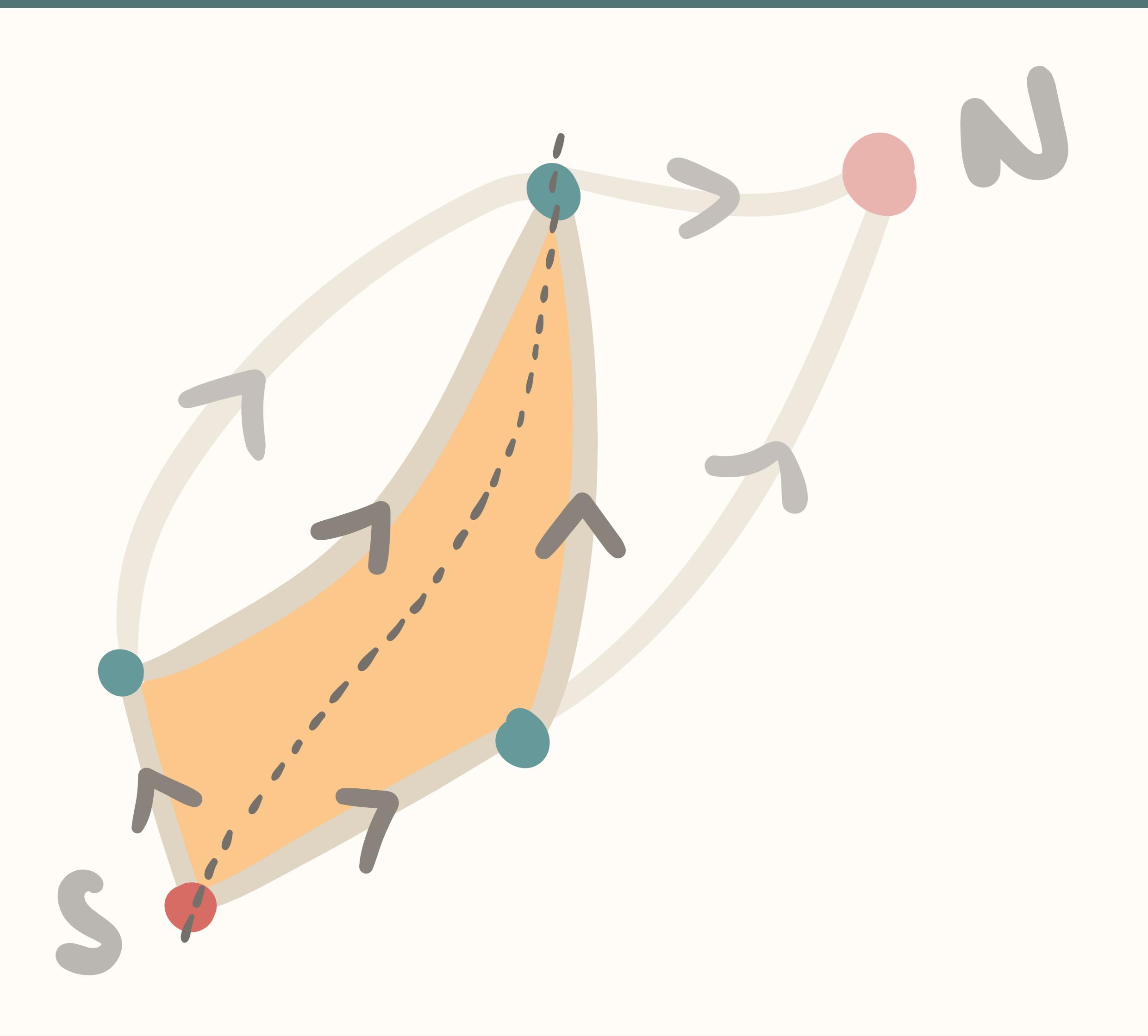
(Digression on plane permutations)

3. Generic transversal structures

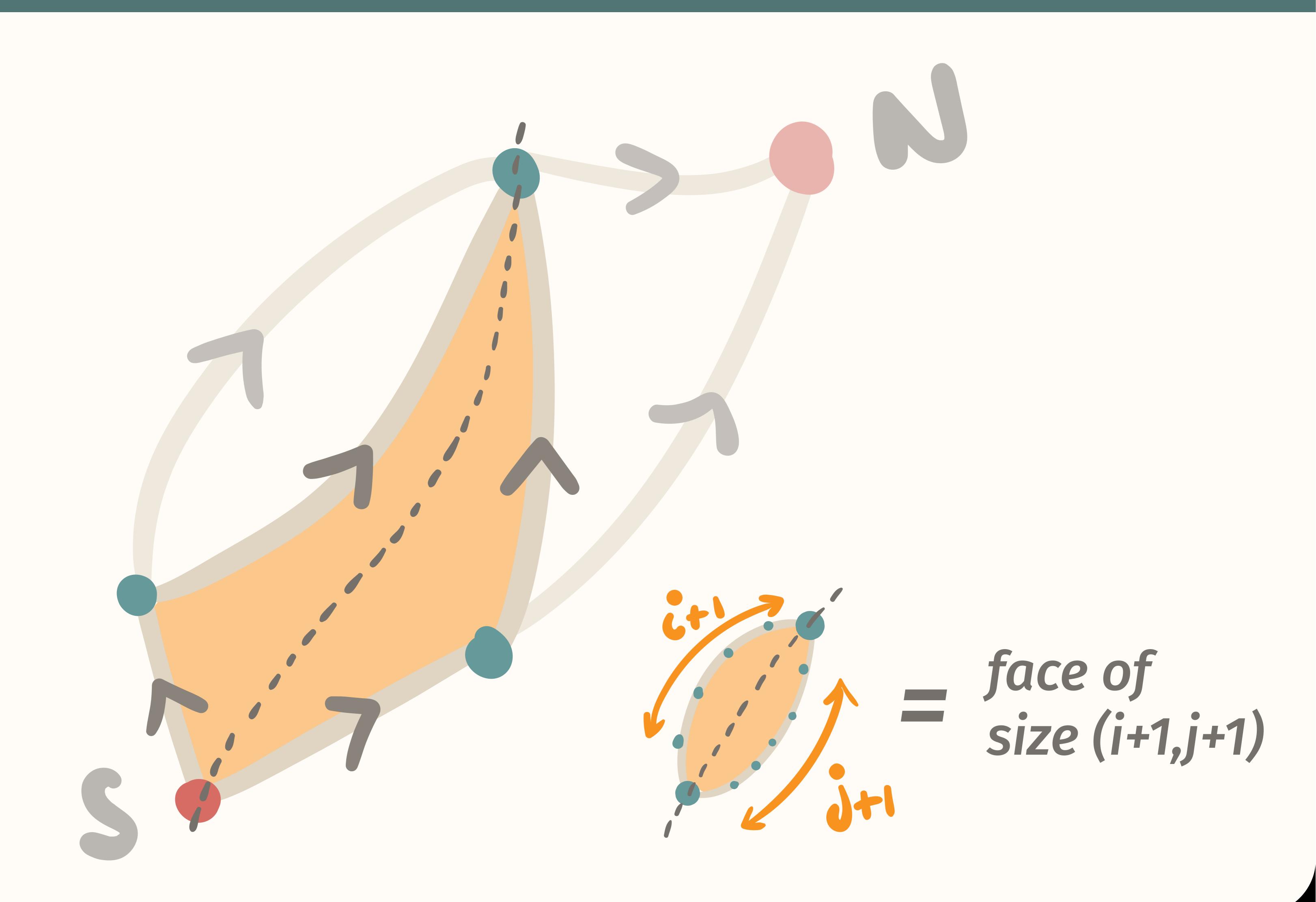
Plane bipolar orientation



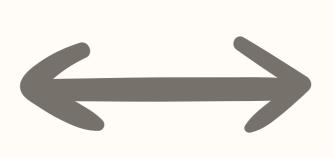
Plane bipolar orientation



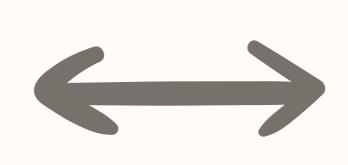
Plane bipolar orientation

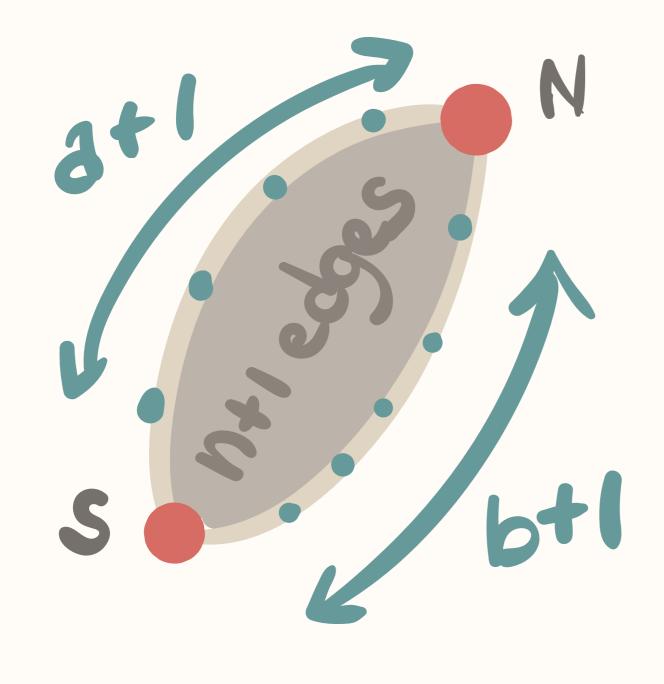


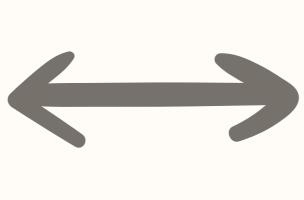
Plane bipolar orientations

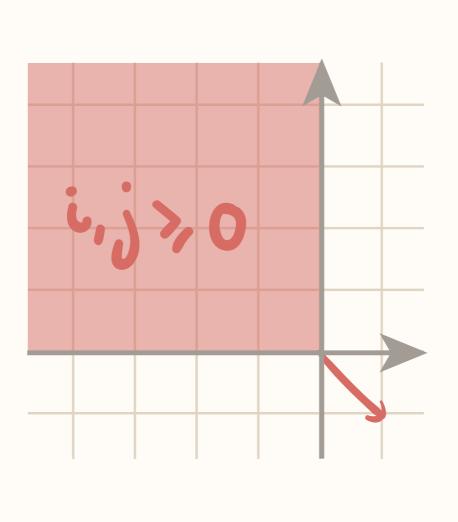


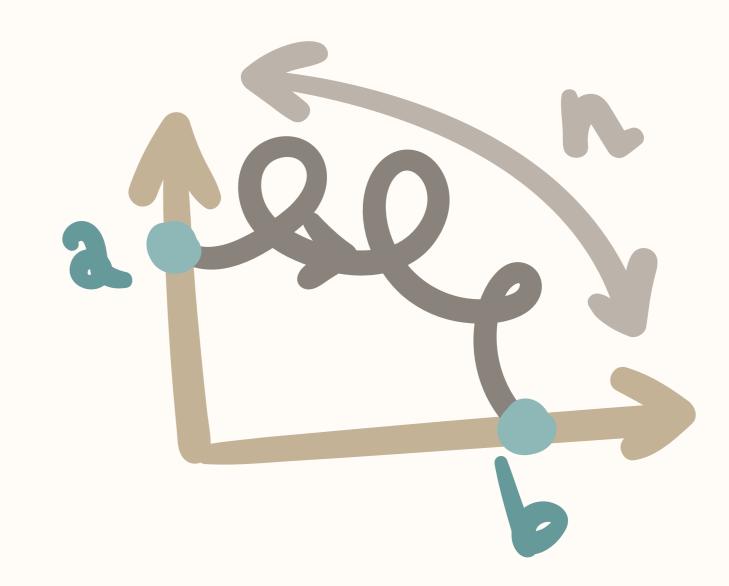
Plane bipolar orientations



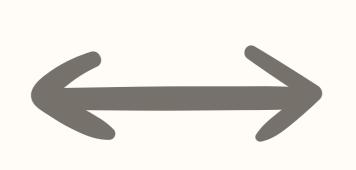


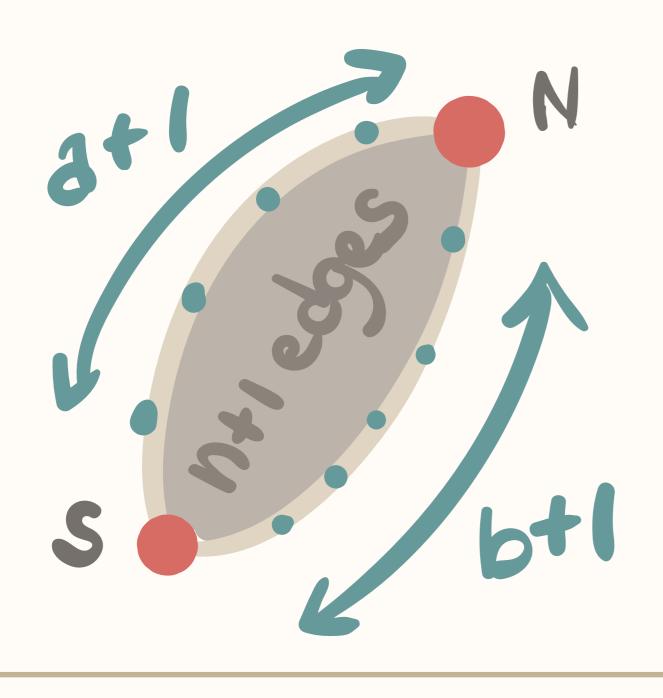


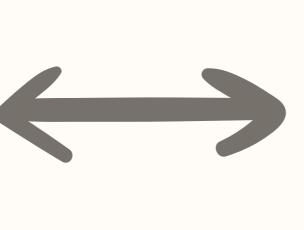


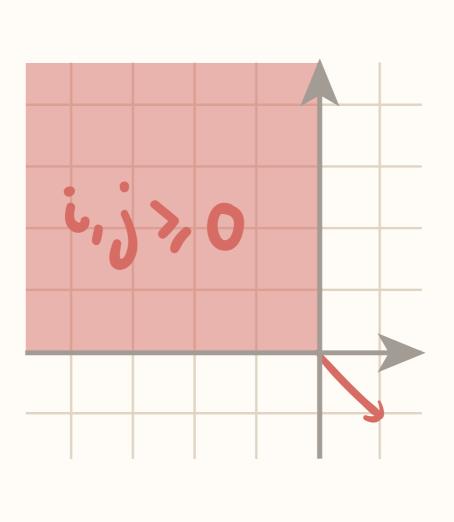


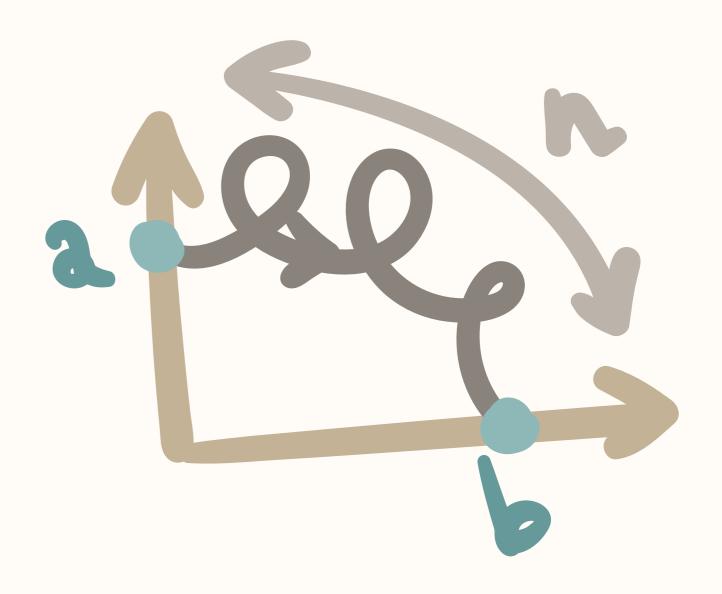
Plane bipolar orientations

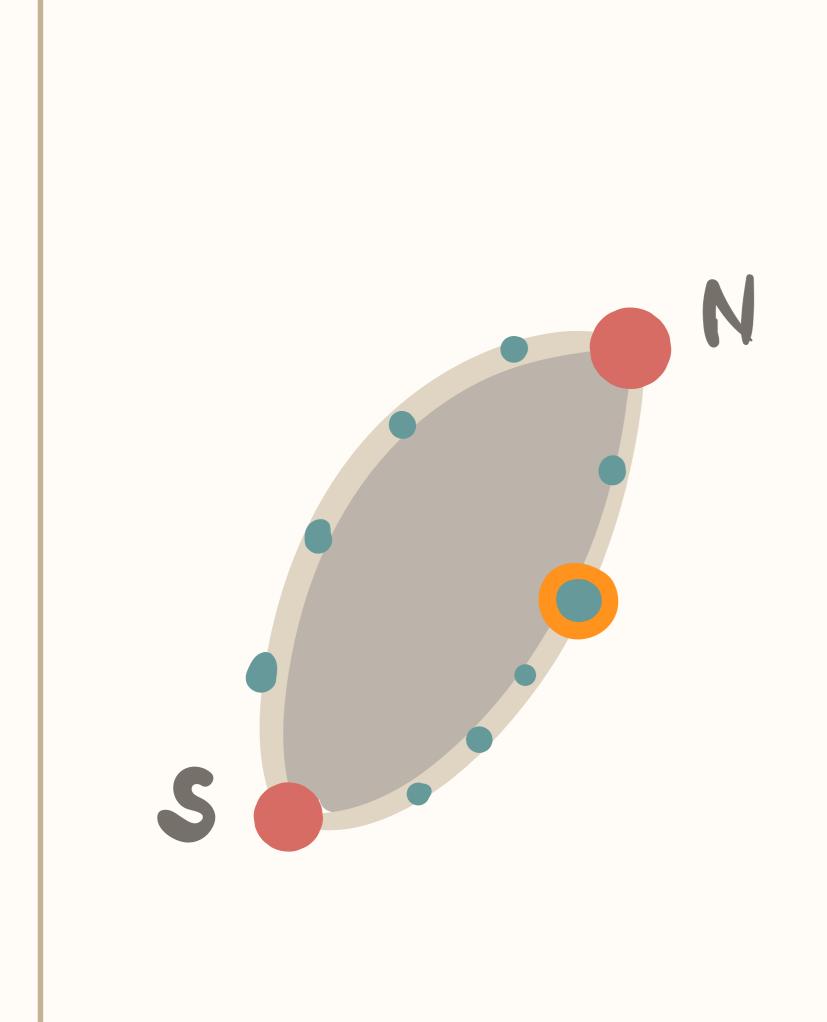




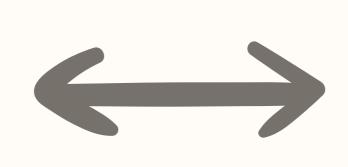


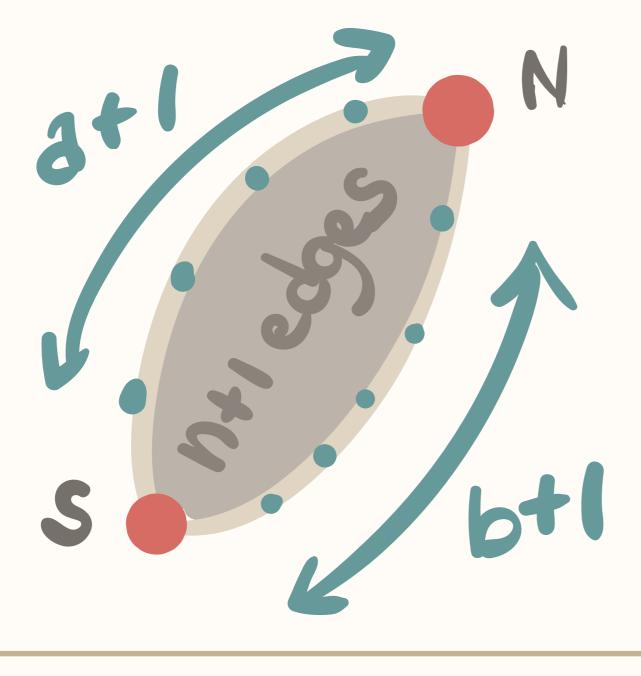


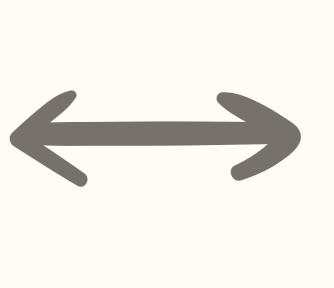


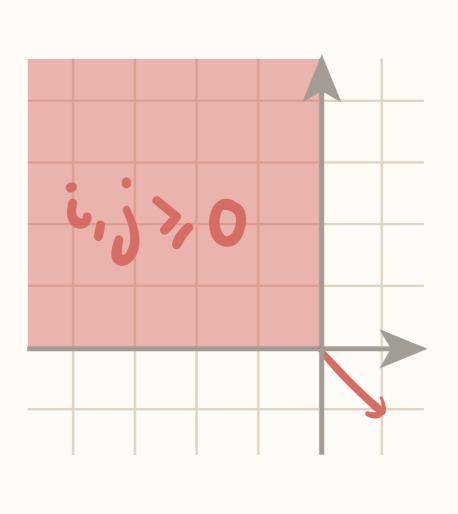


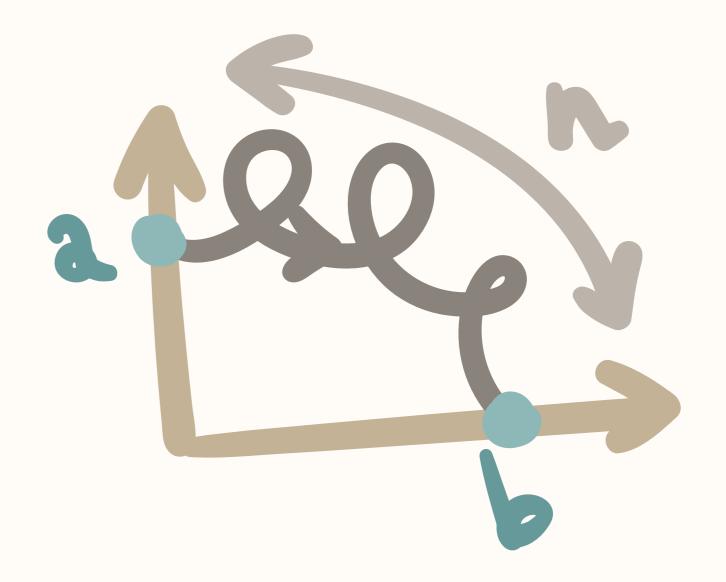
Plane bipolar orientations

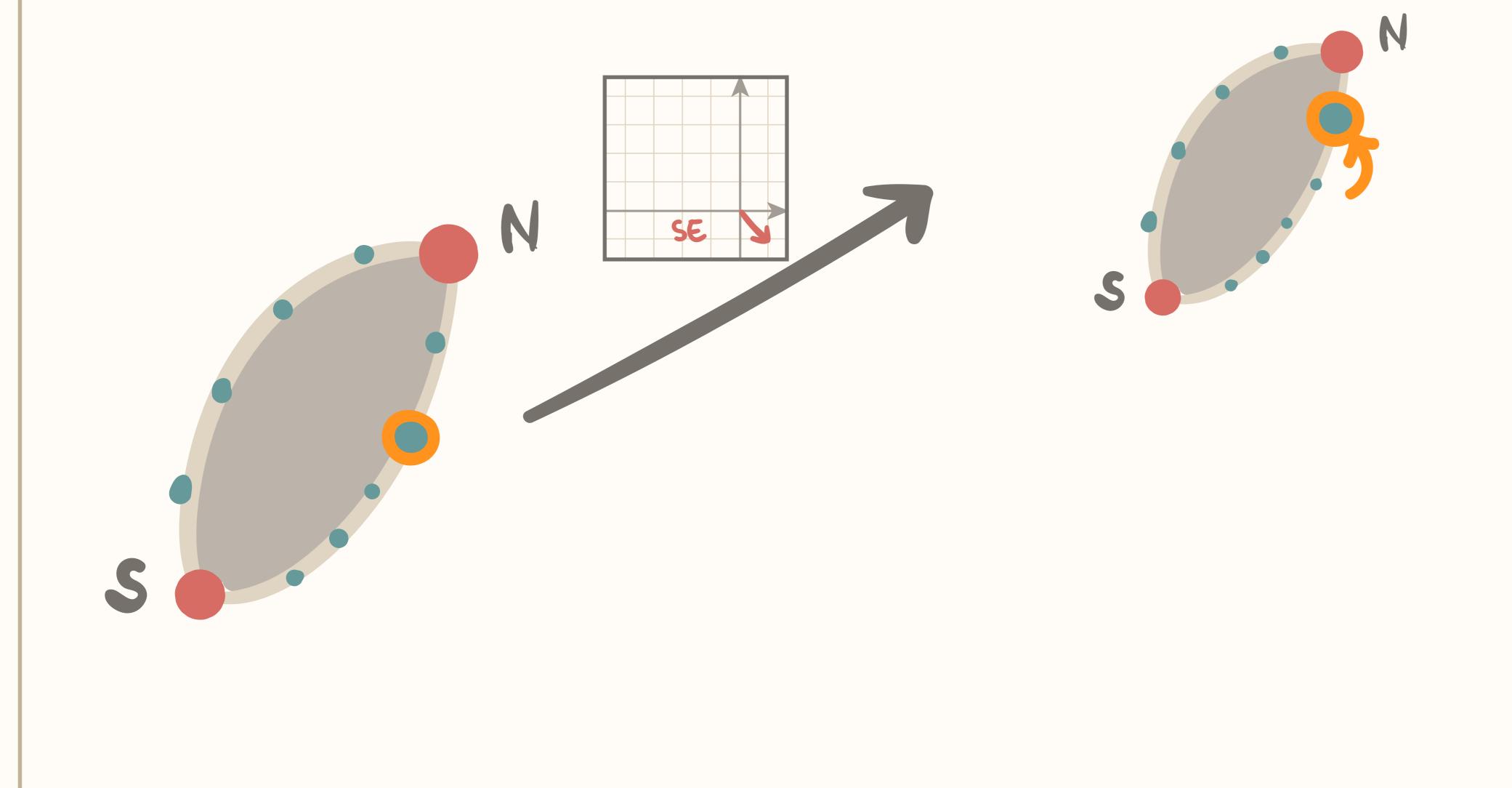




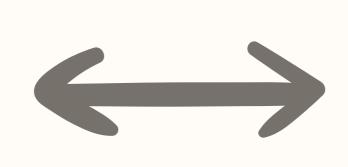


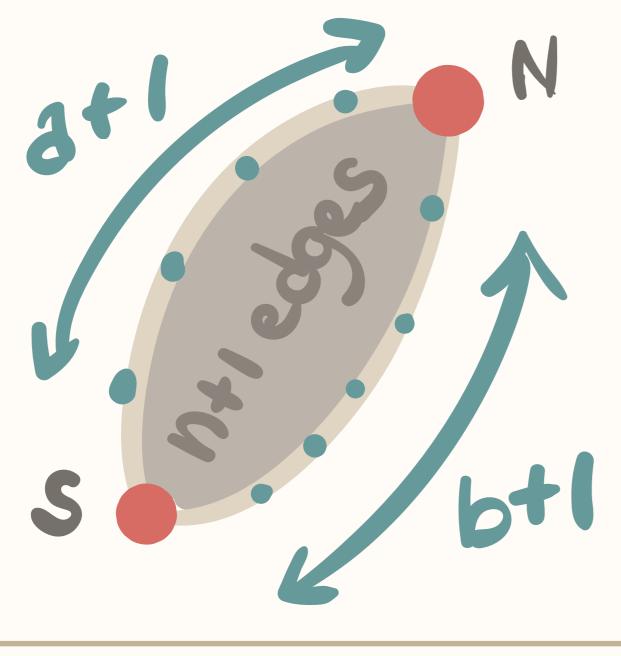




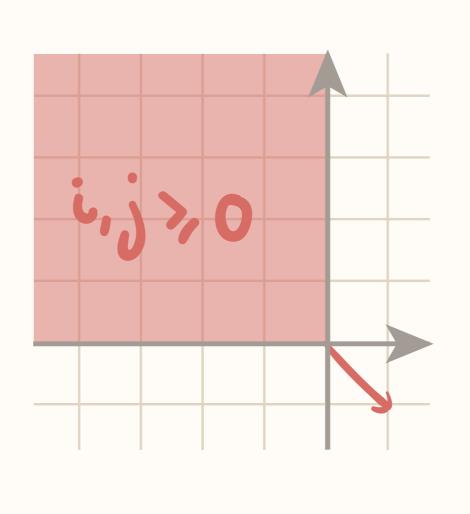


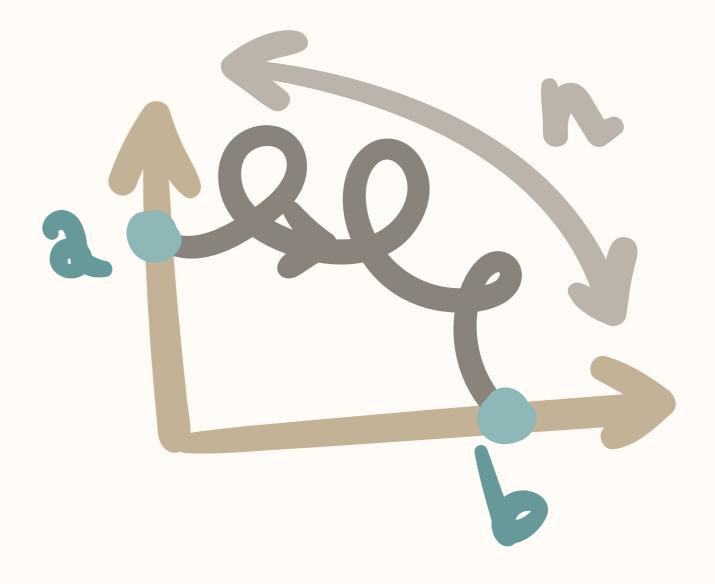
Plane bipolar orientations

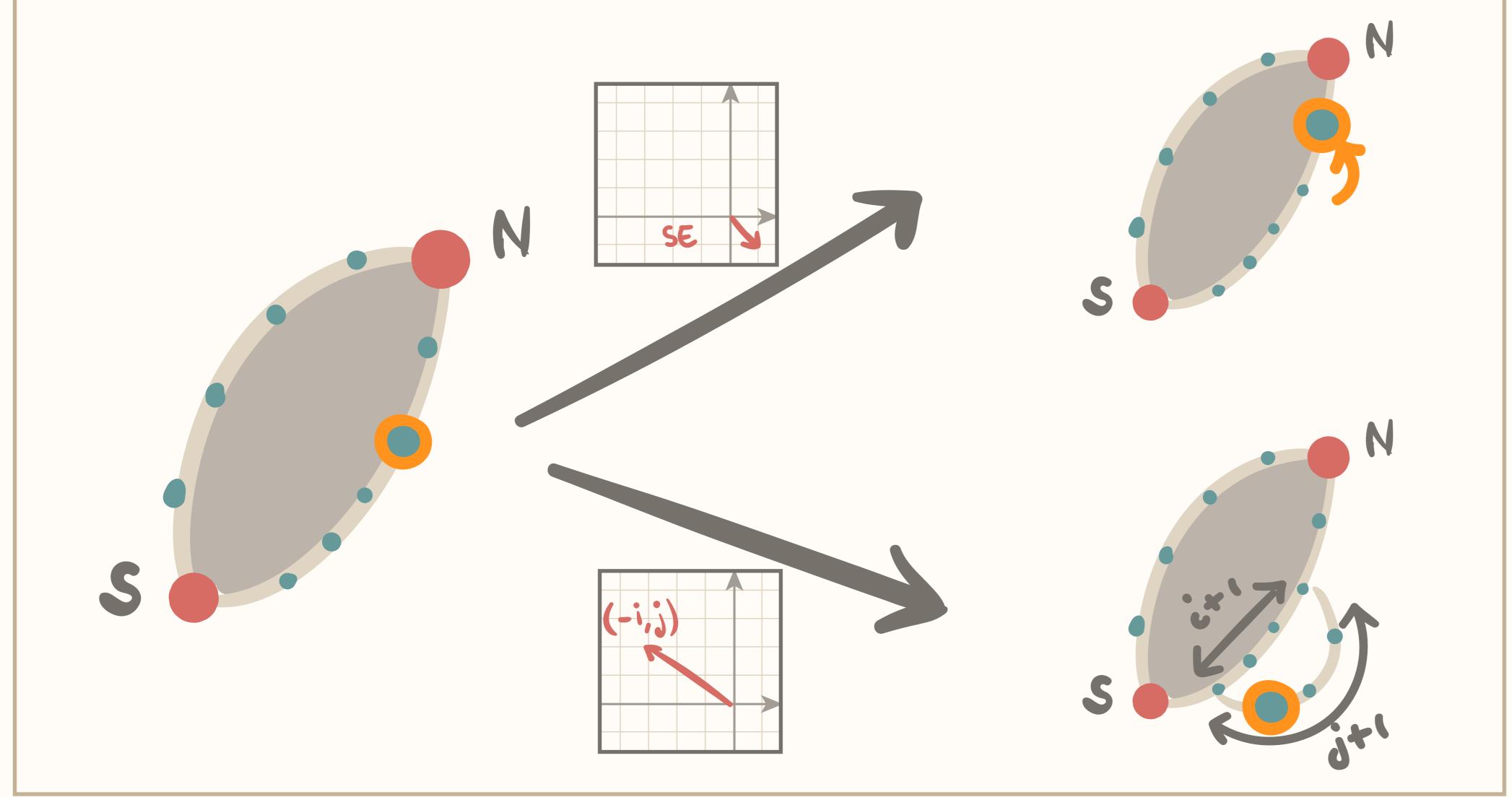




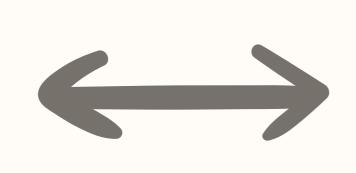


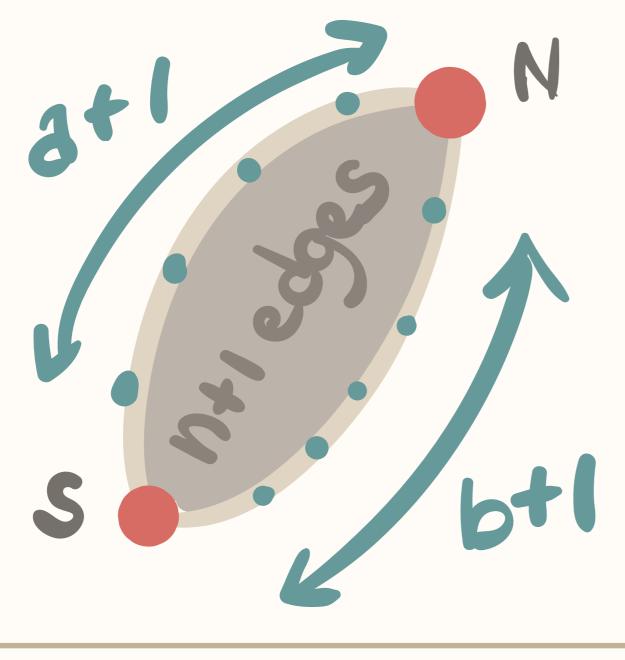


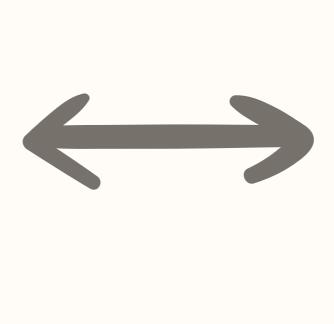


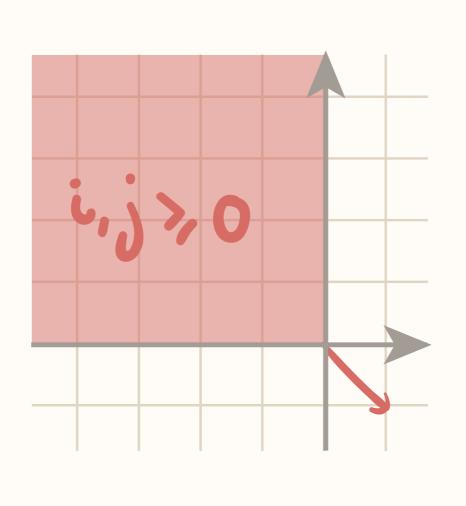


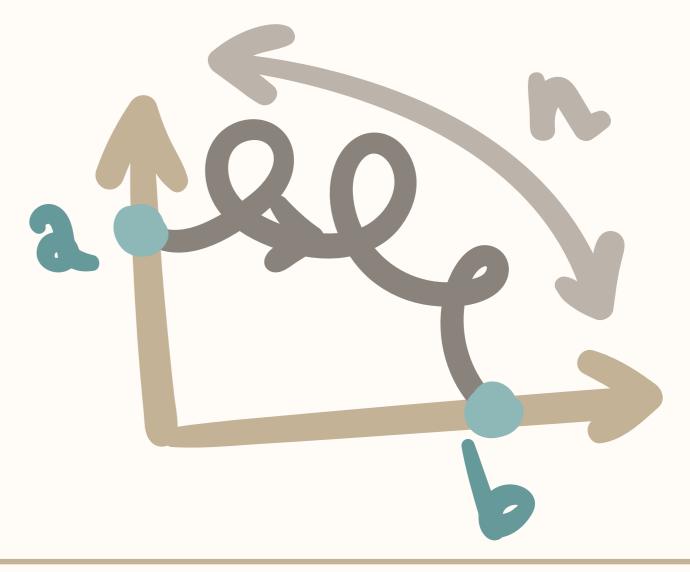
Plane bipolar orientations

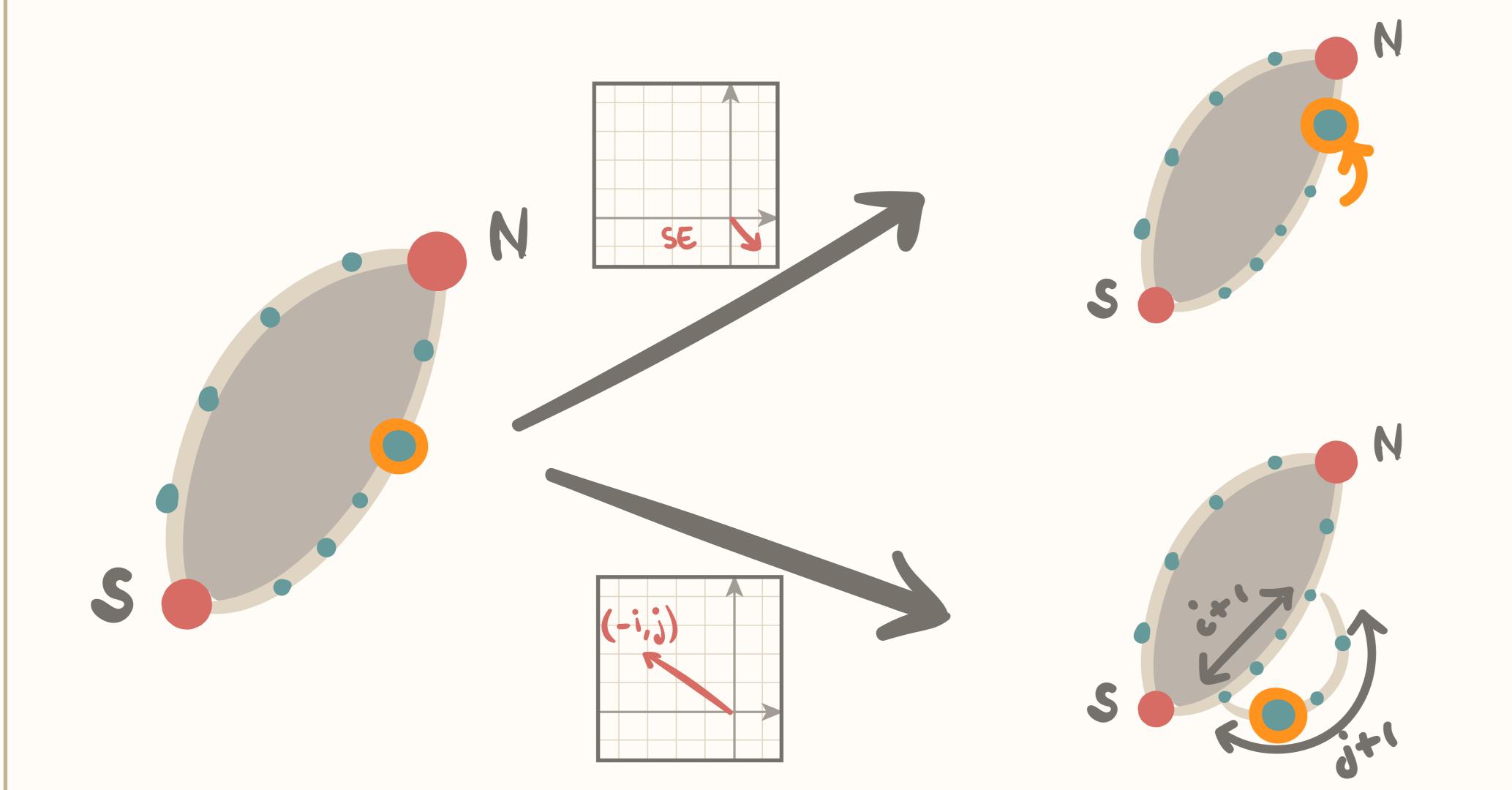


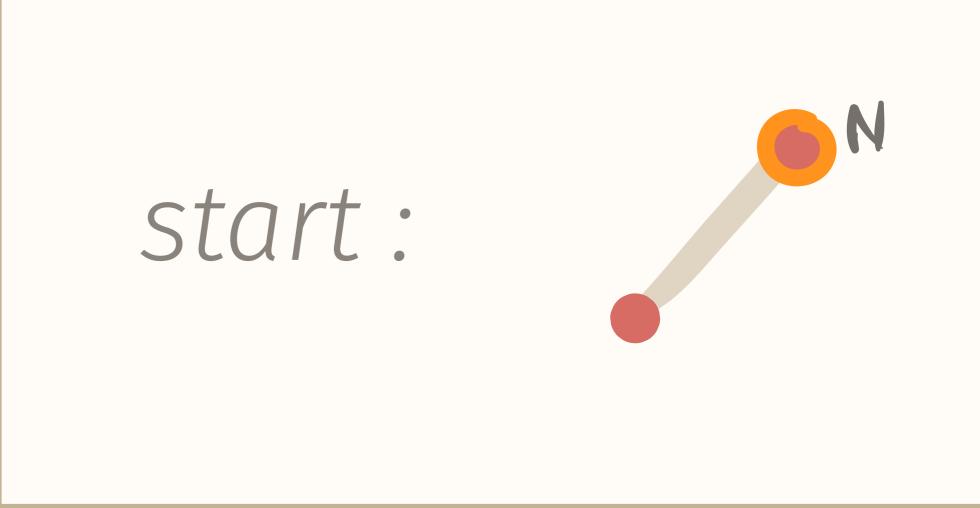




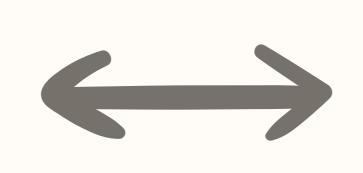


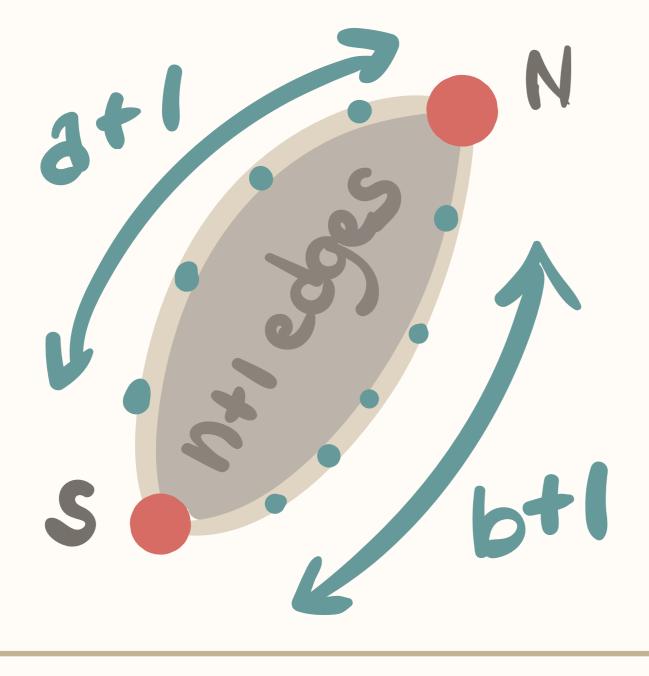


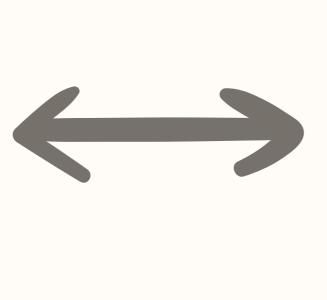


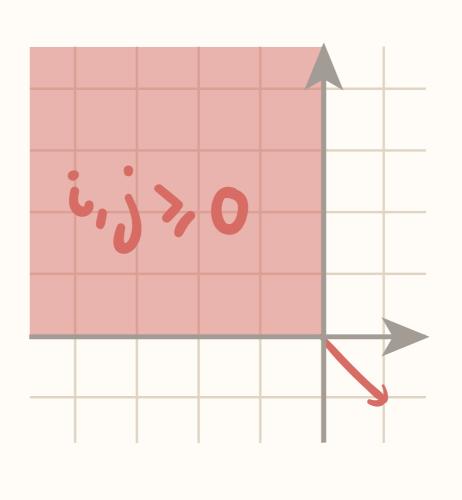


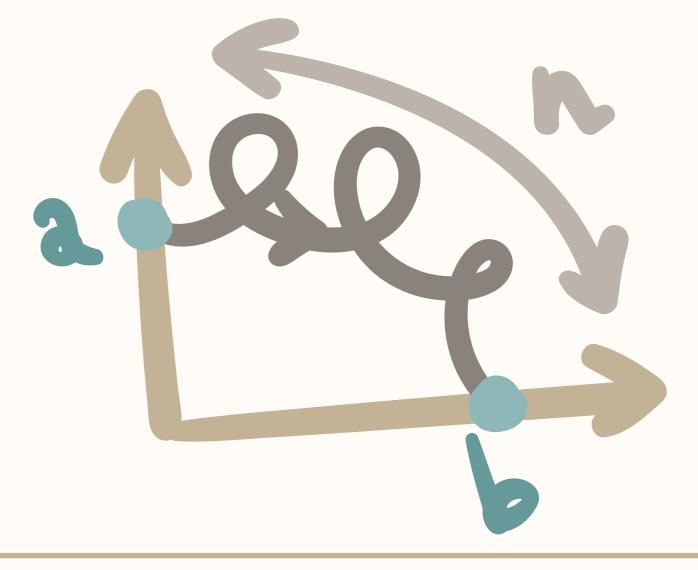
Plane bipolar orientations

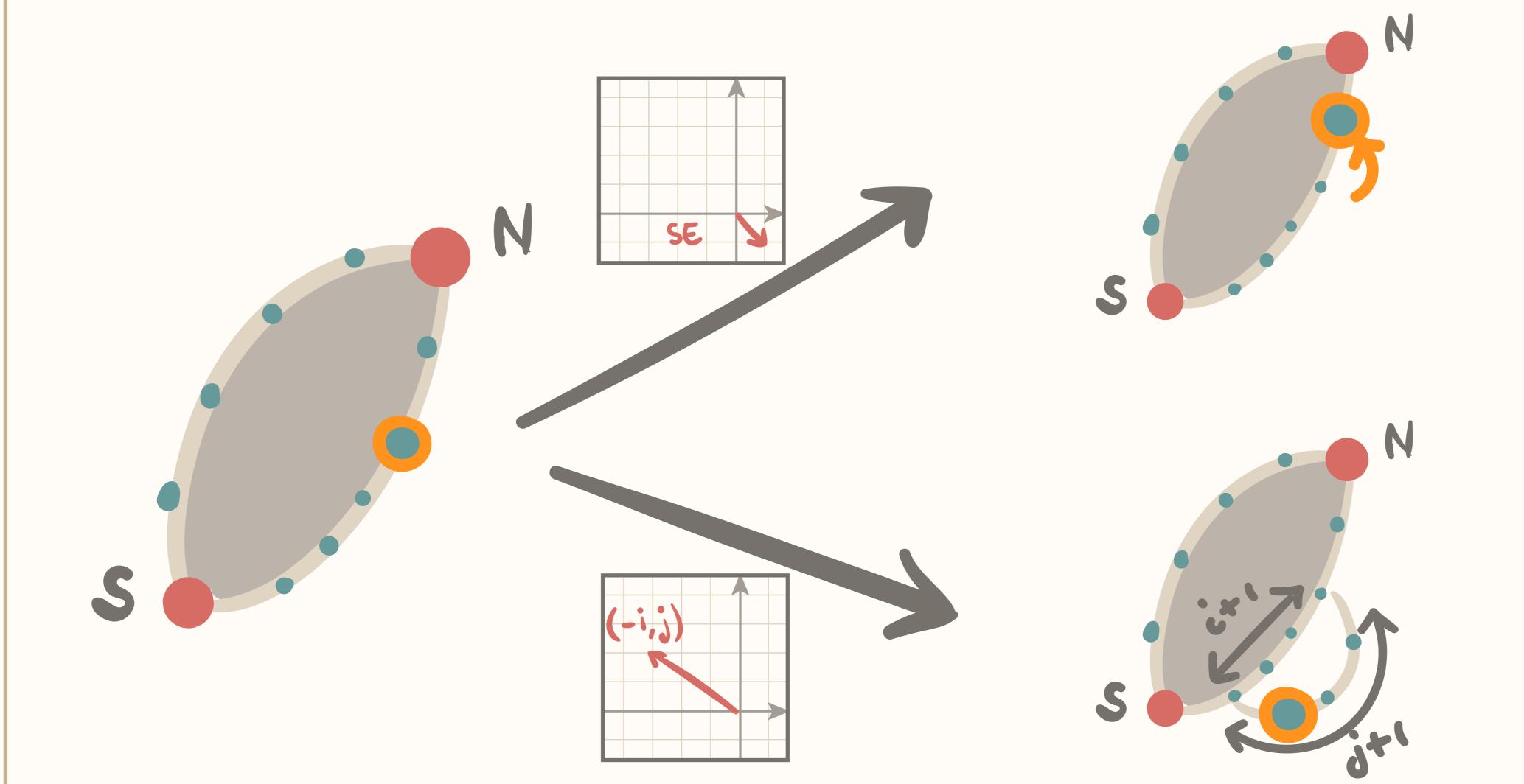


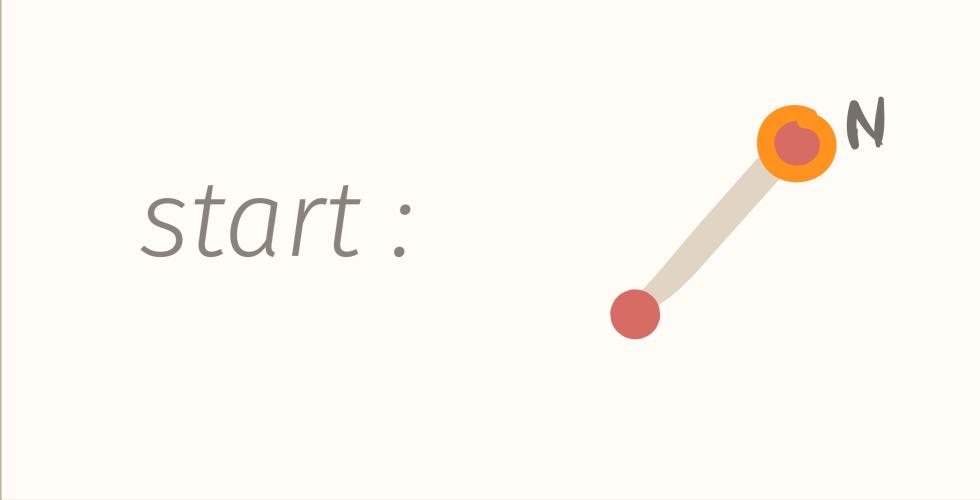


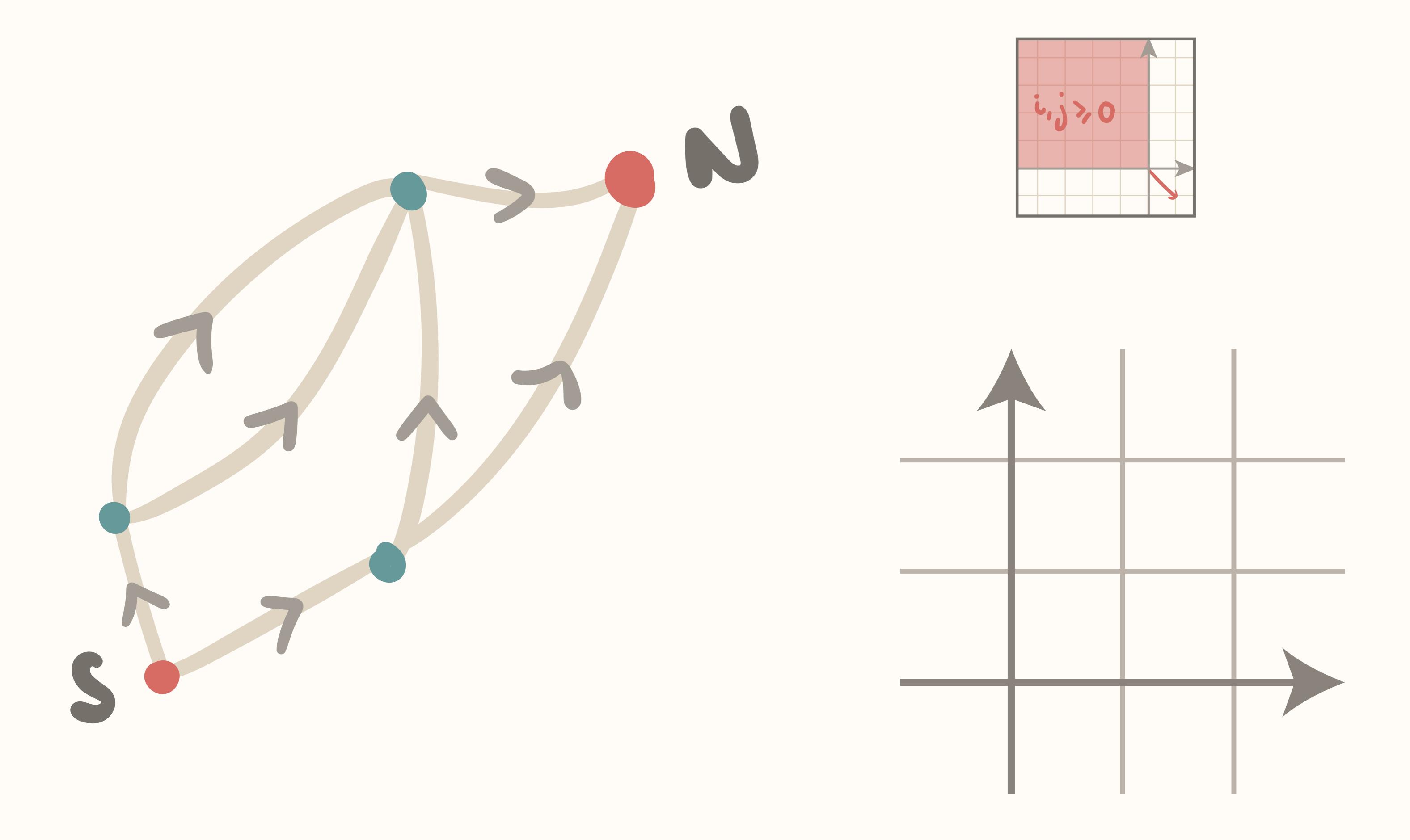


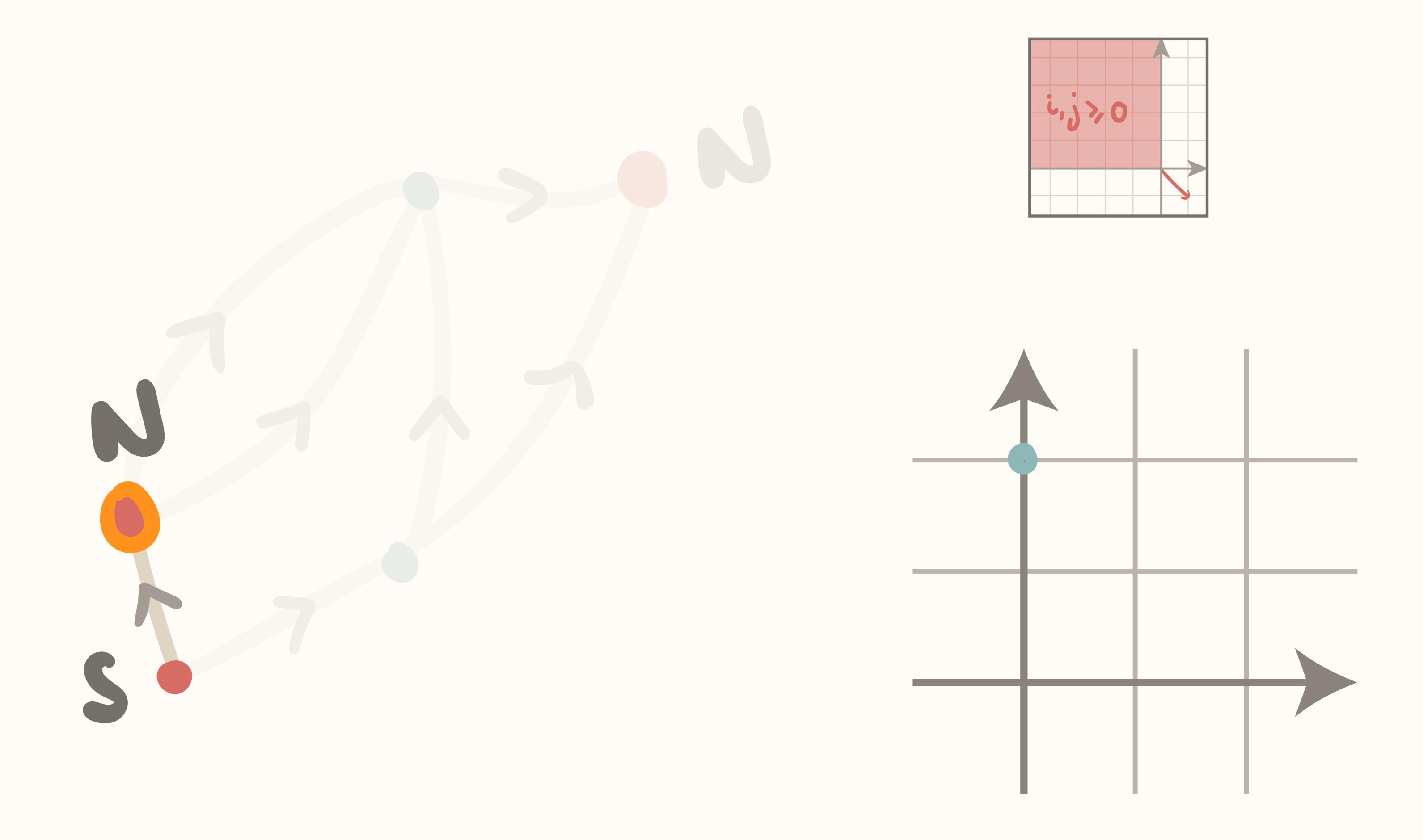


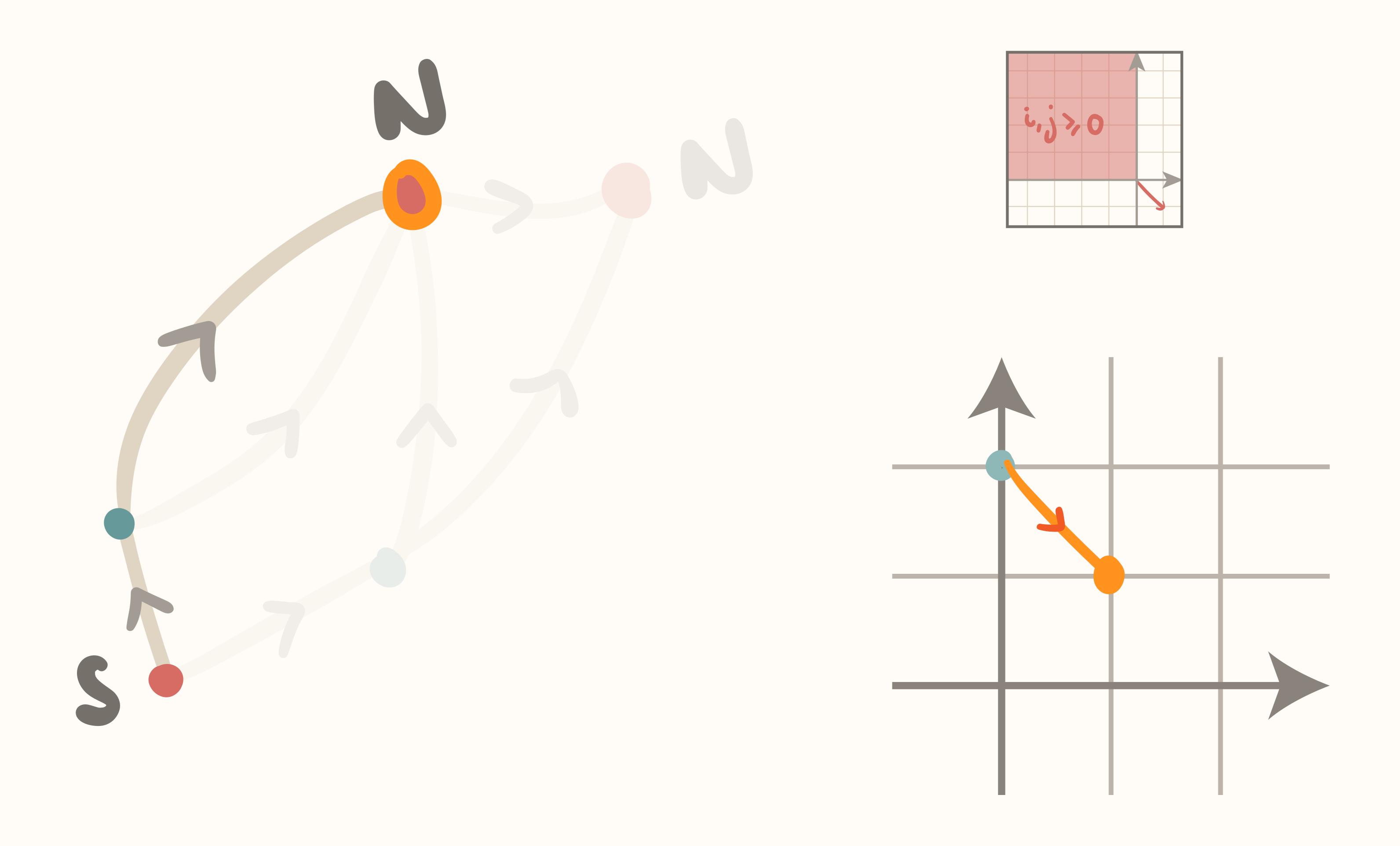


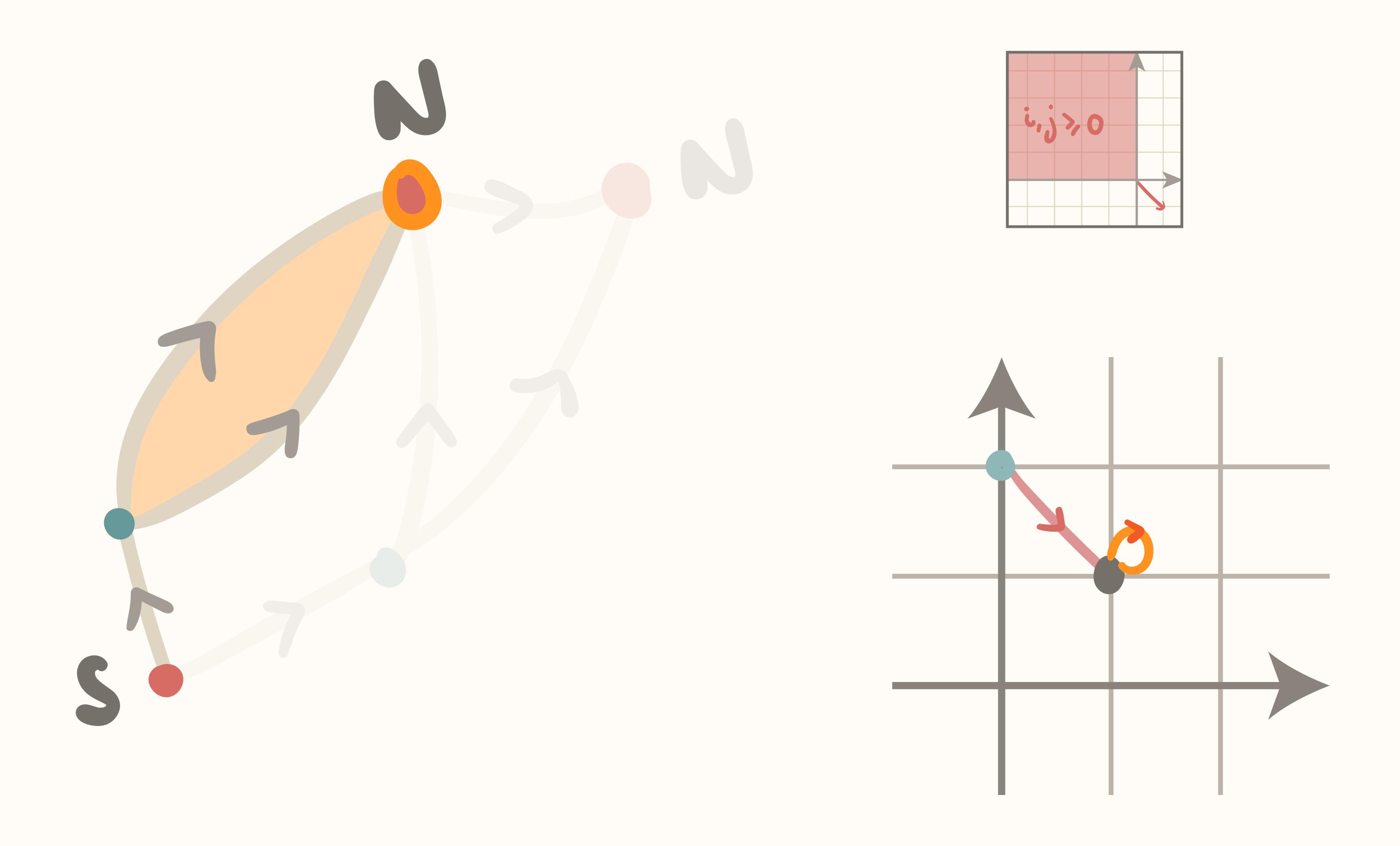


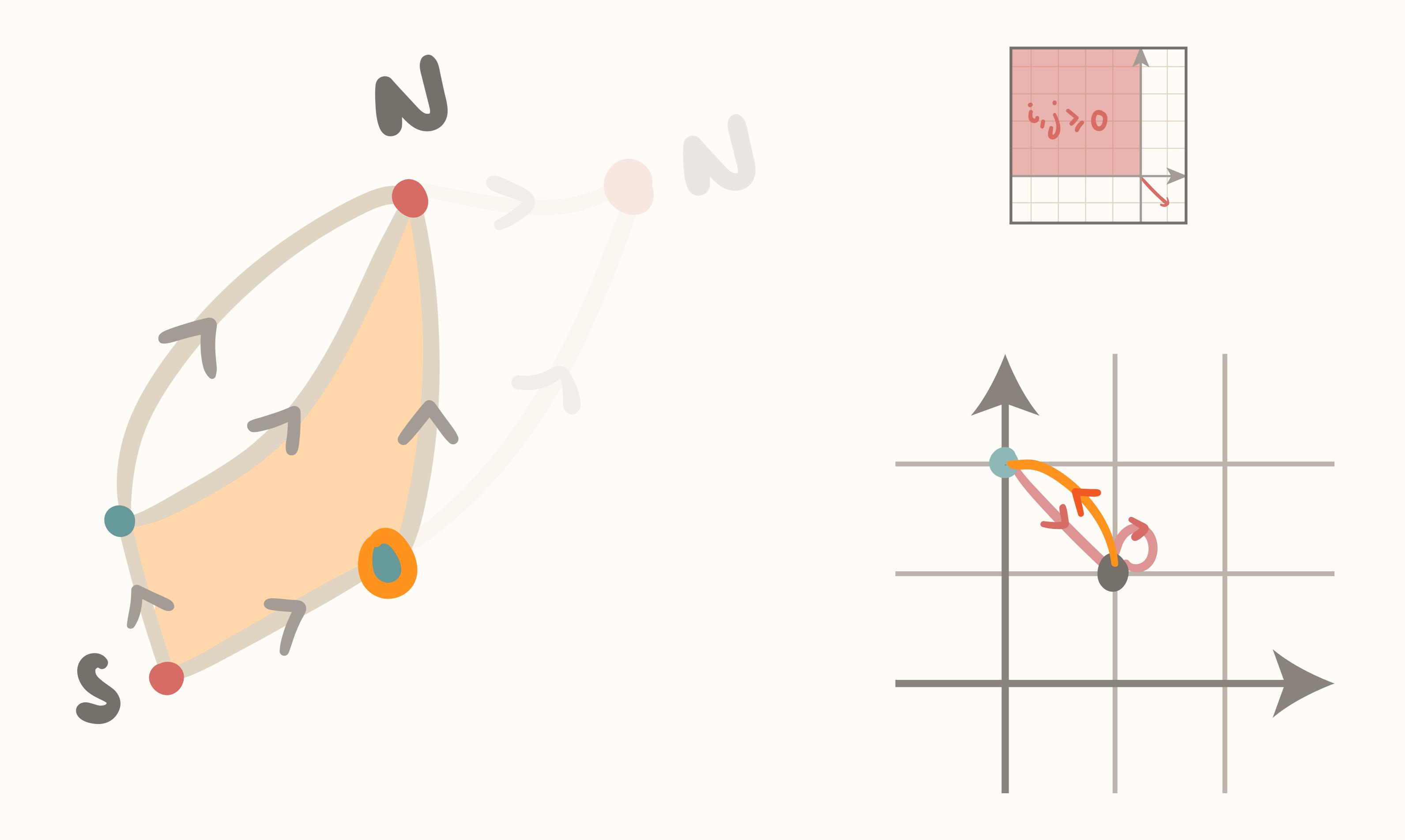


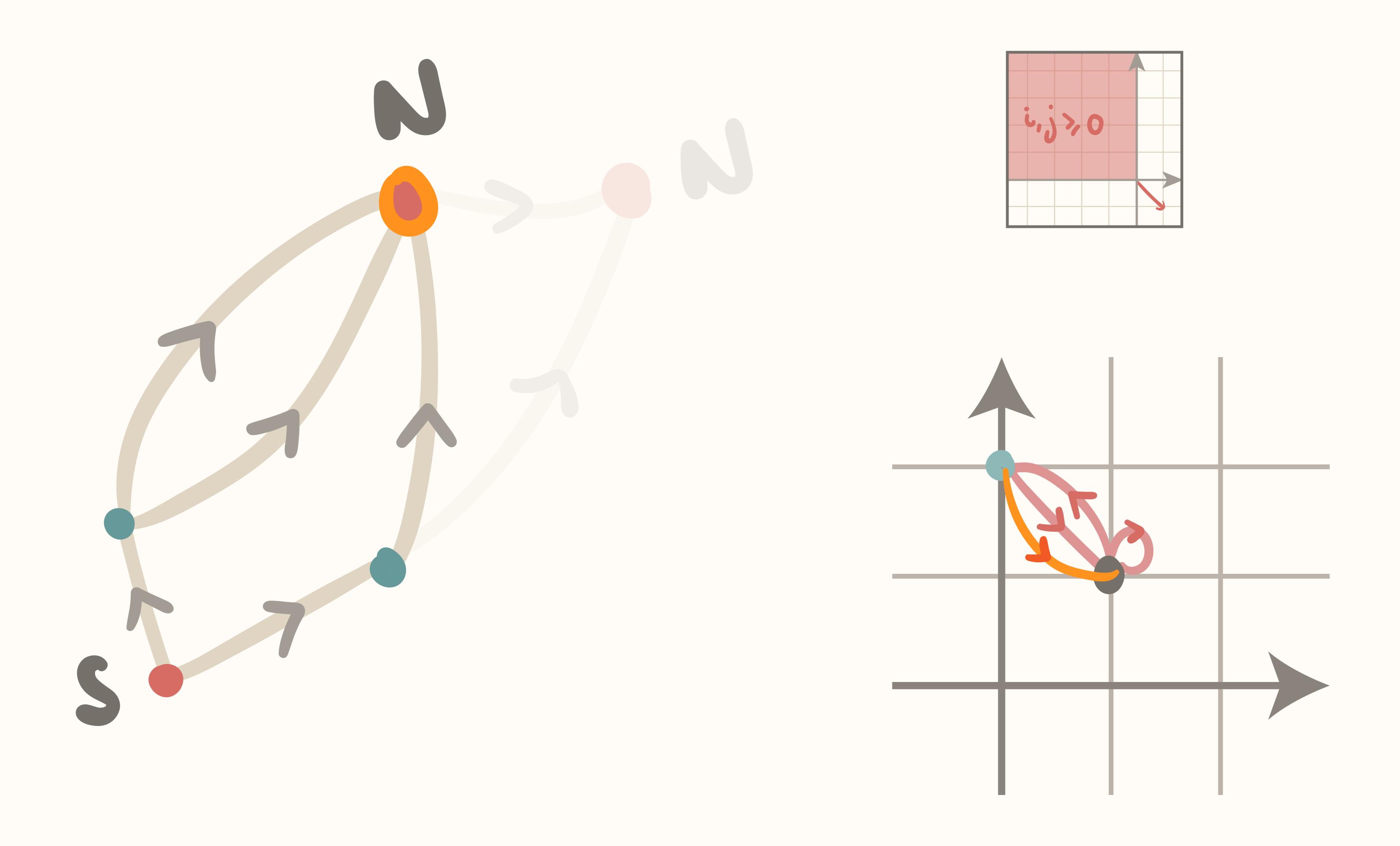




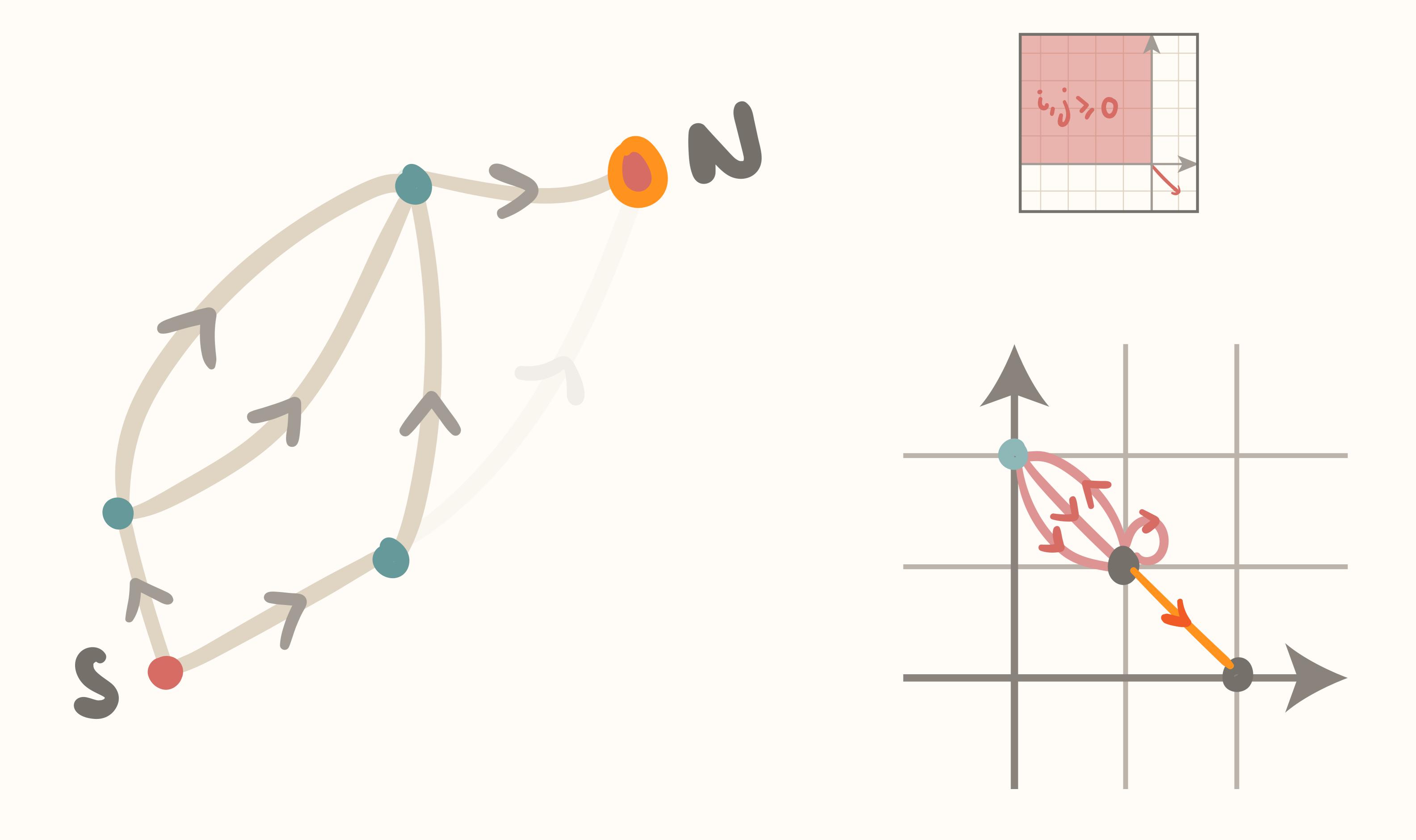




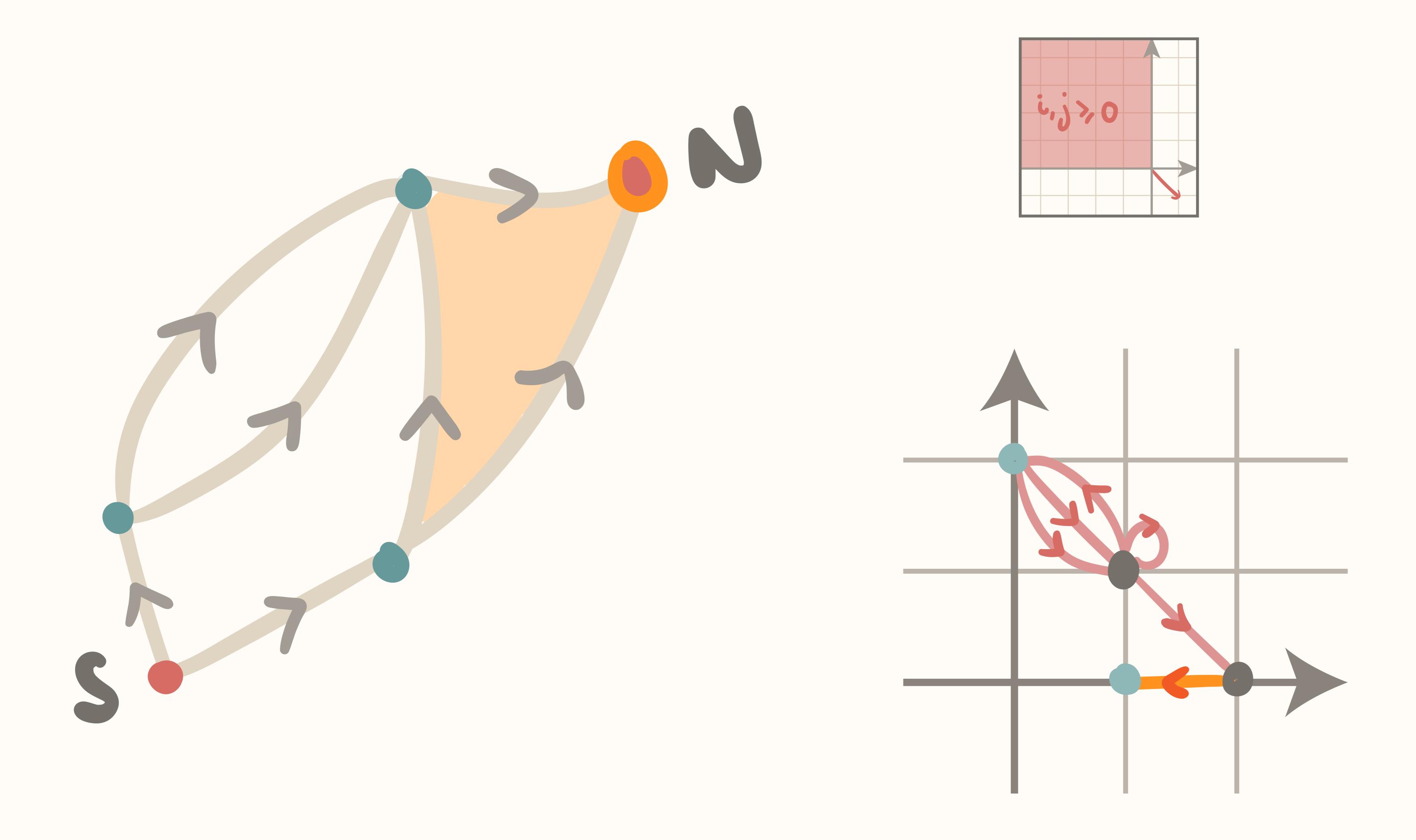




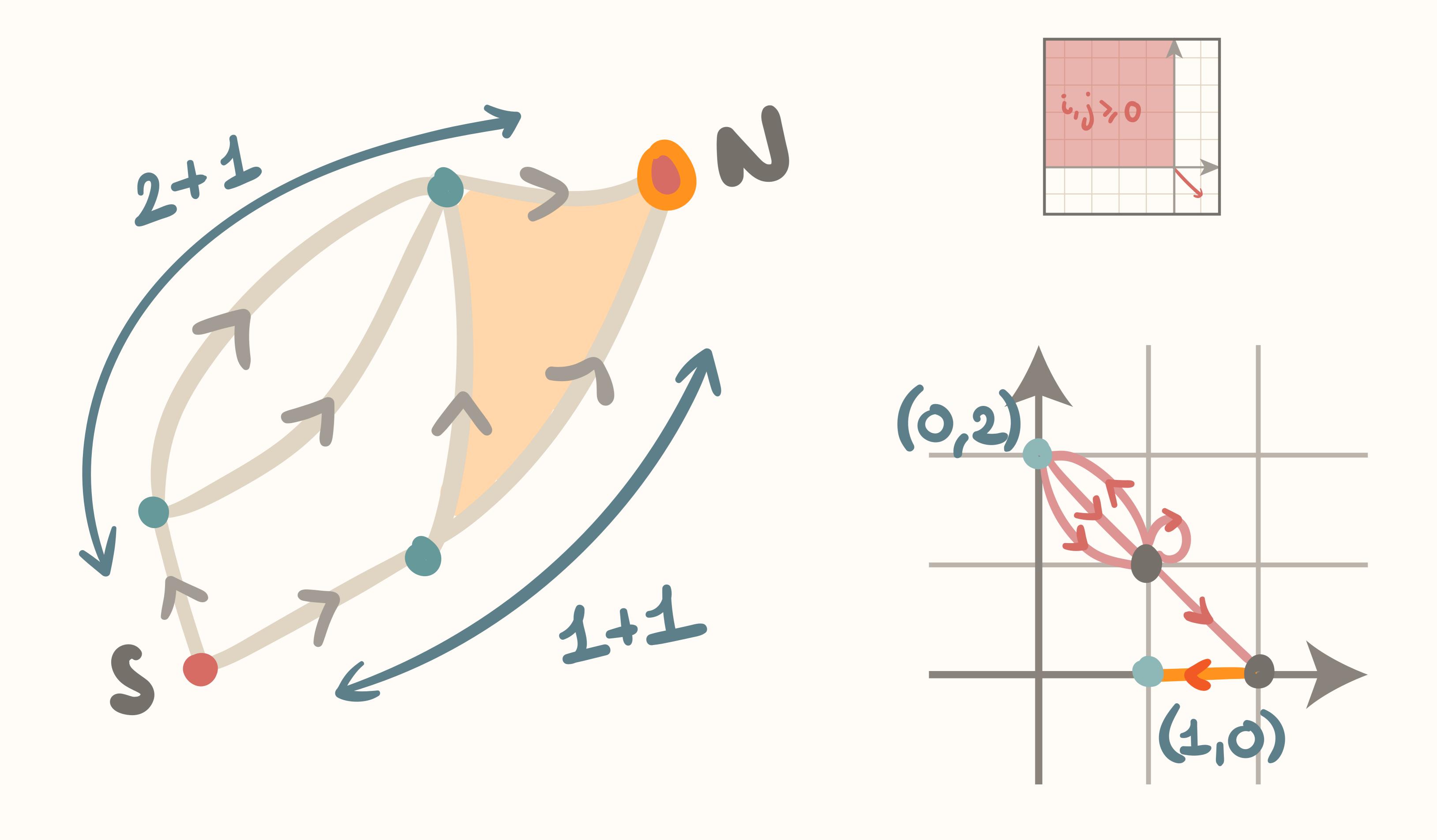
KMSW bijection example



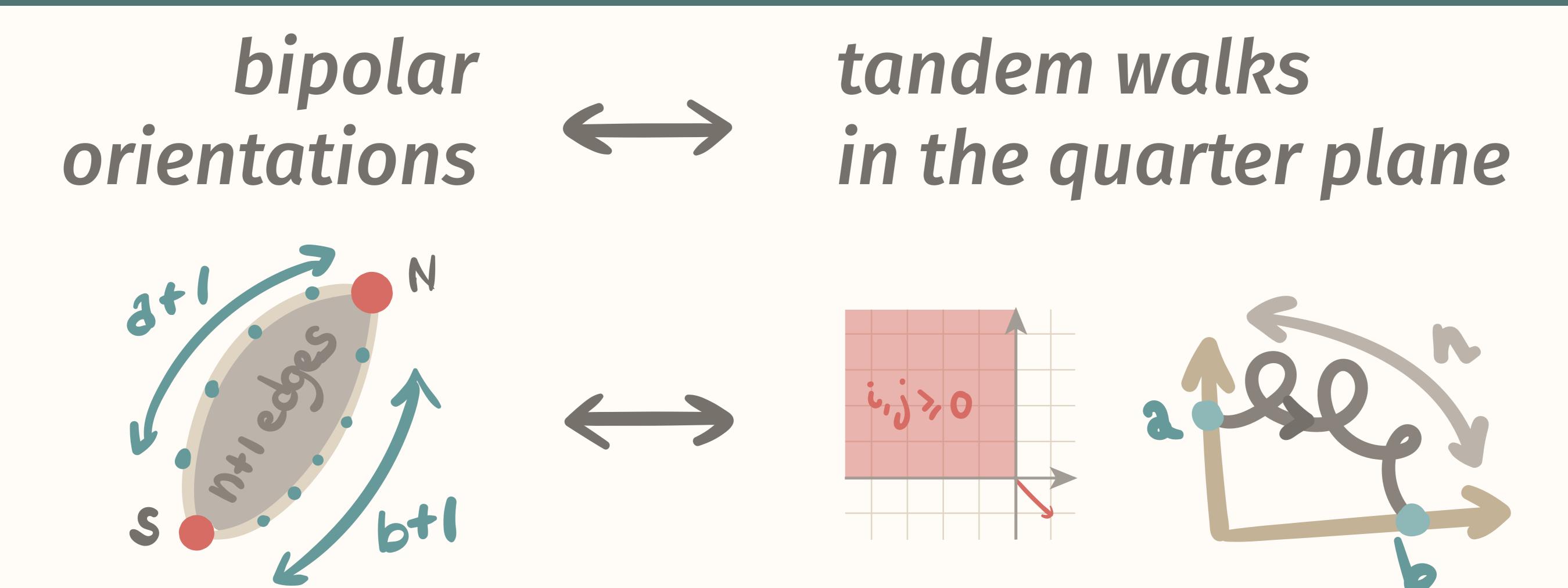
KMSW bijection example



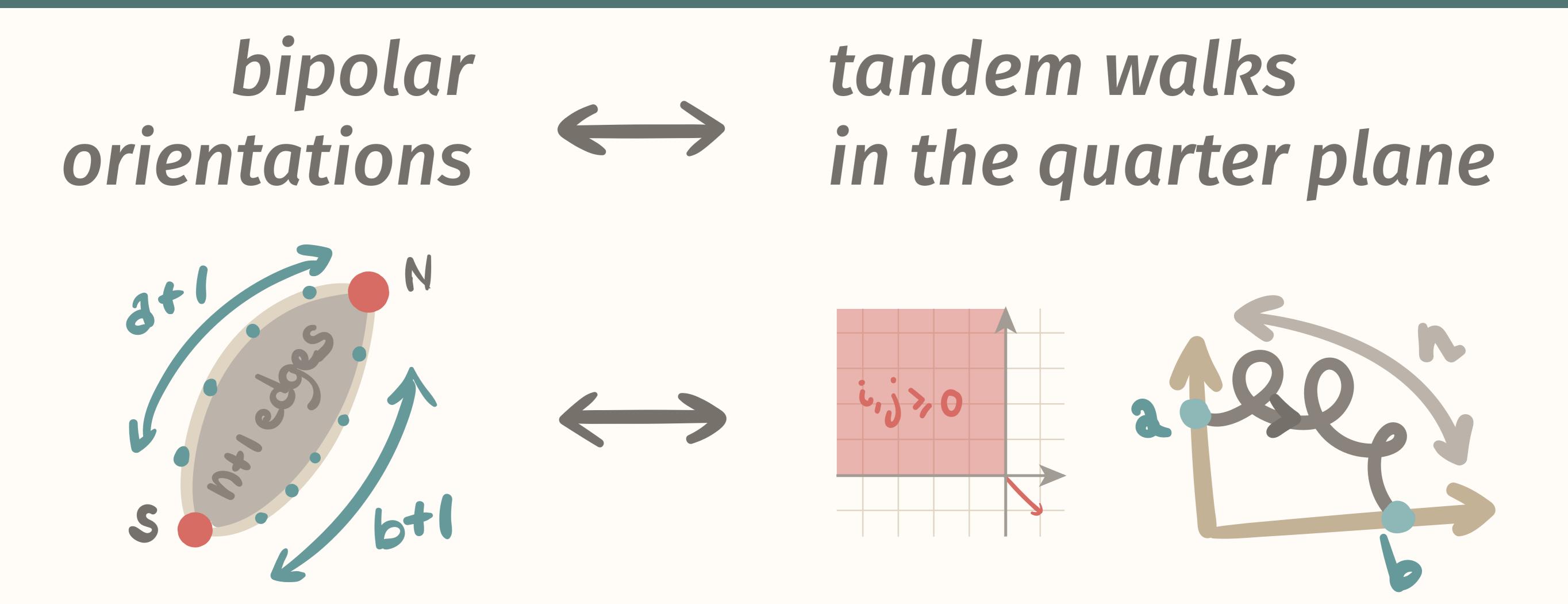
KMSW bijection example



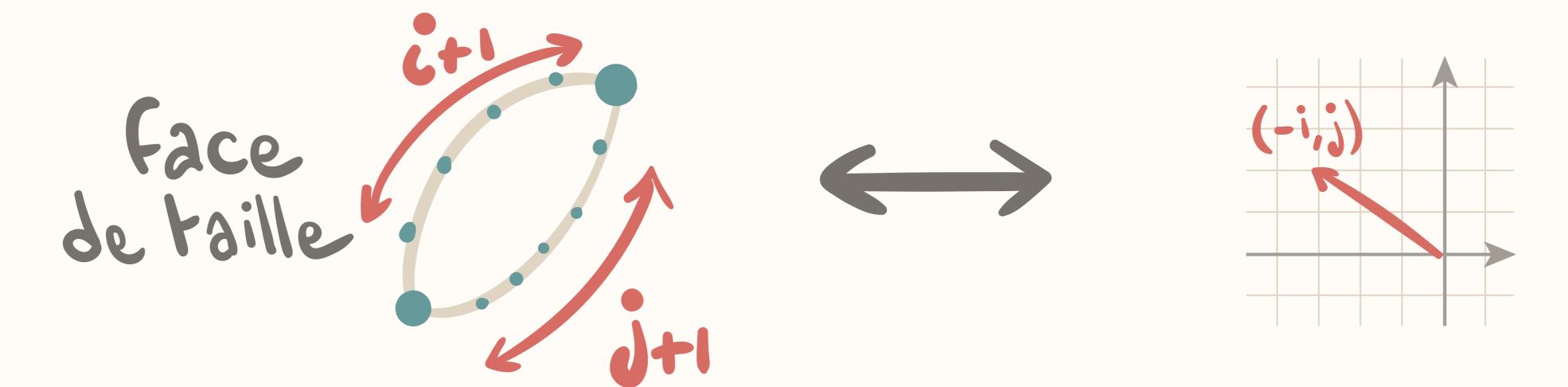
La bijection KMSW



La bijection KMSW



 \rightarrow Bipolar orientations on planar maps and SLE_{12} , R. Kenyon, J. Miller, S. Sheffield and D. Wilson (2015)



Summuny

Maps and decorated maps

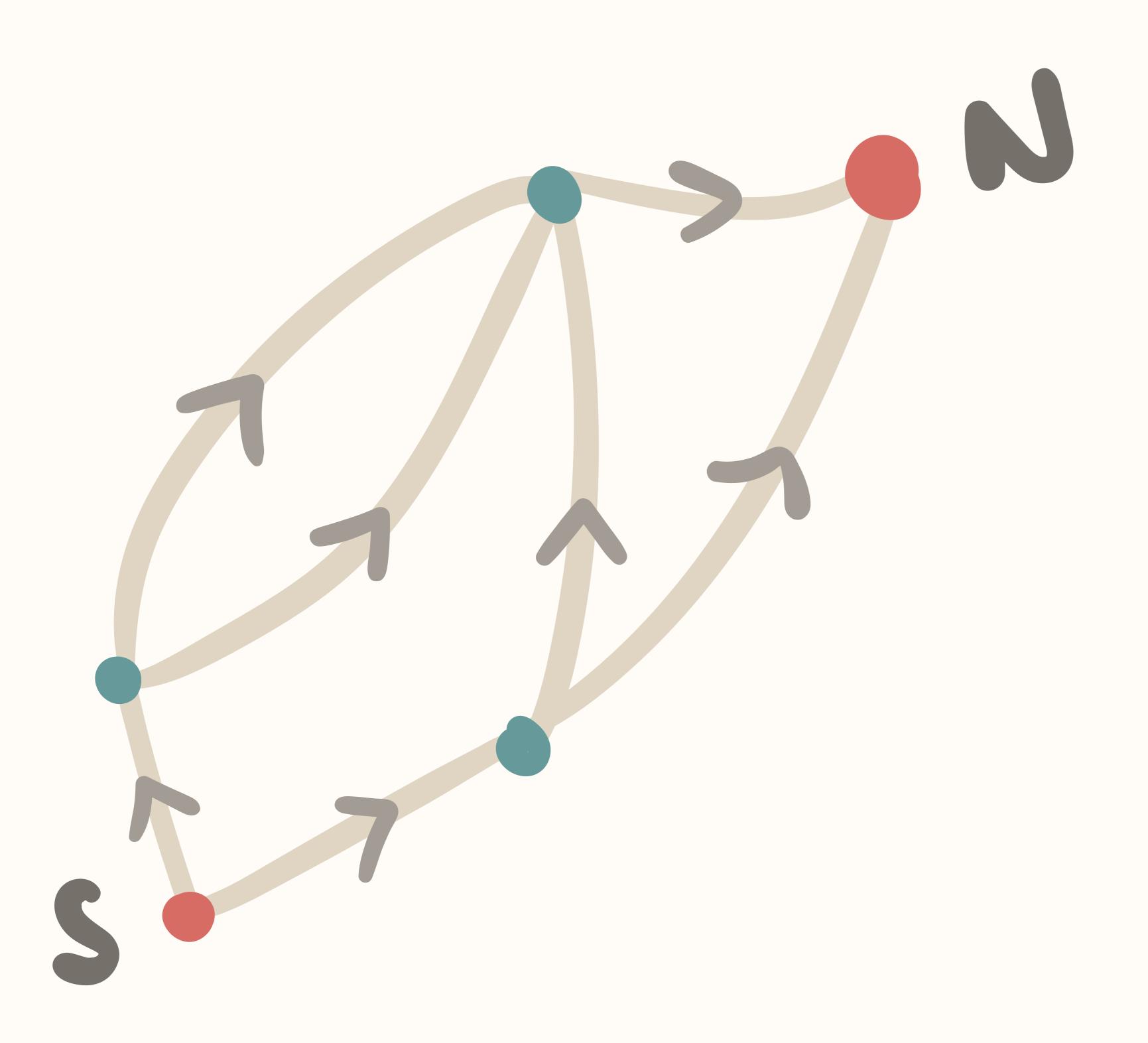
1. Bijection with quadrant tandem walks

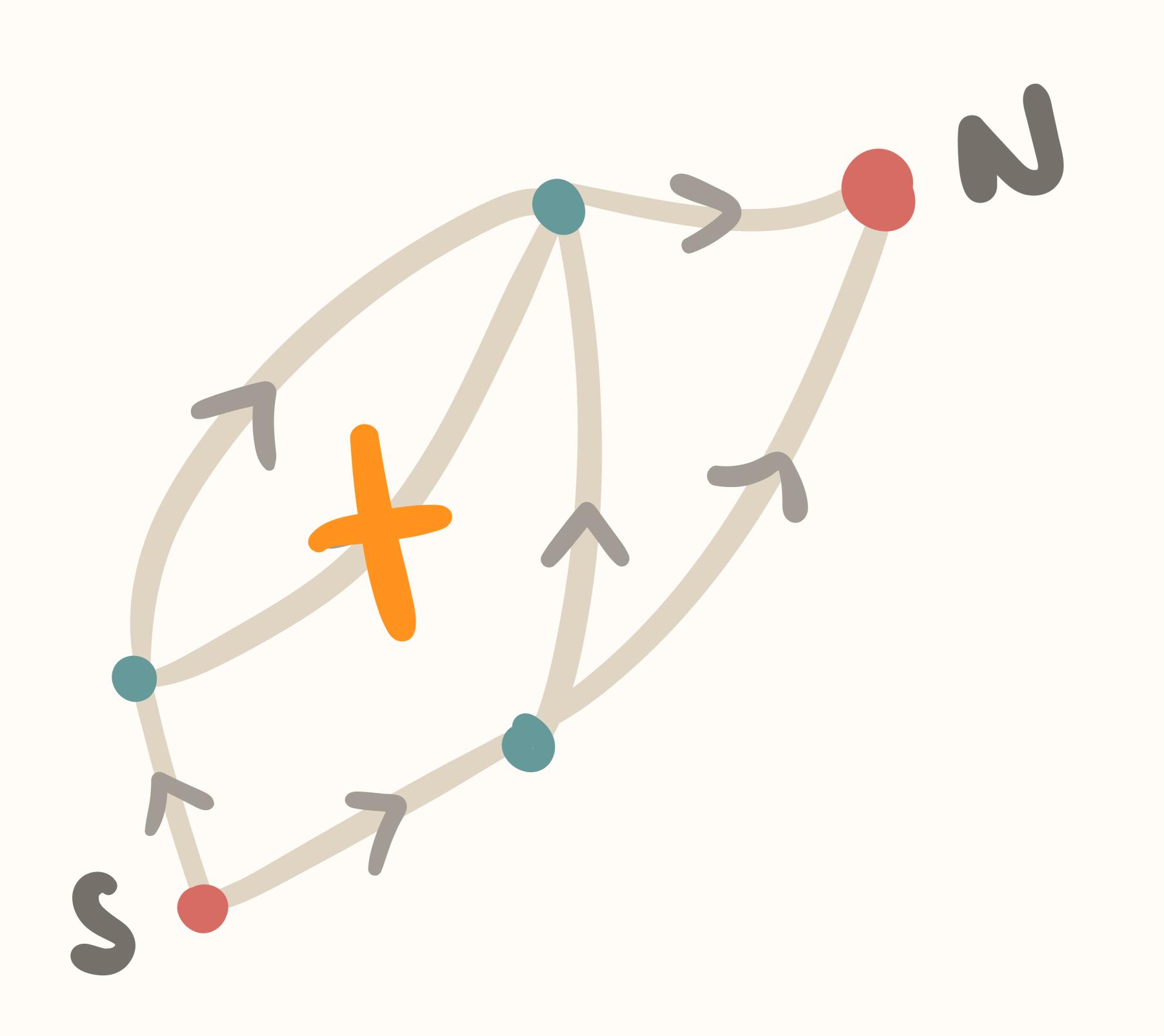
- a. The KMSW bijection
- b. Plane bipolar posets
- c. Plane bipolar posets by vertices
- d. Transversal structures

2. Asymptotic enumeration

(Digression on plane permutations)

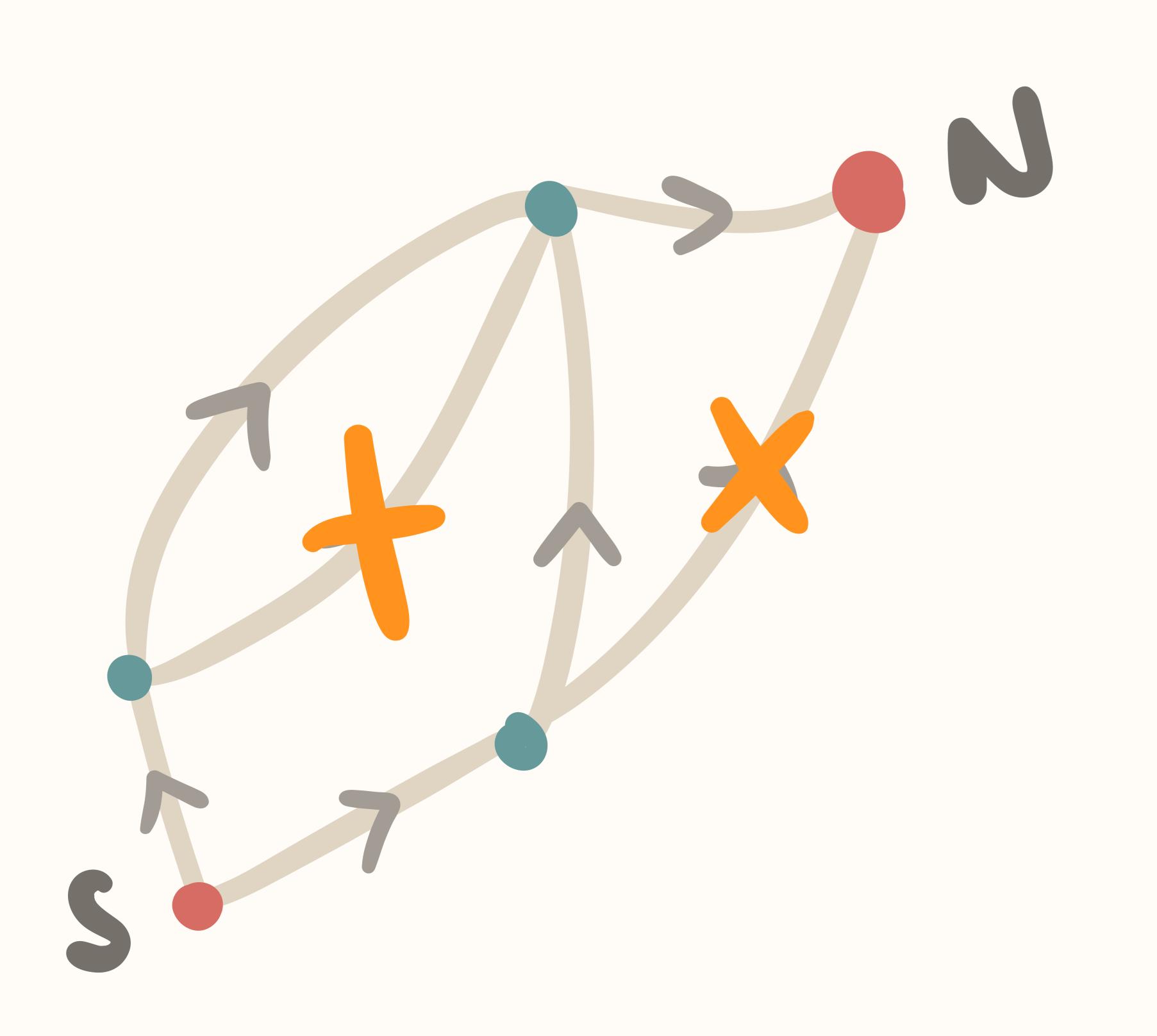
3. Generic transversal structures





Poset (plane bipolar poset)

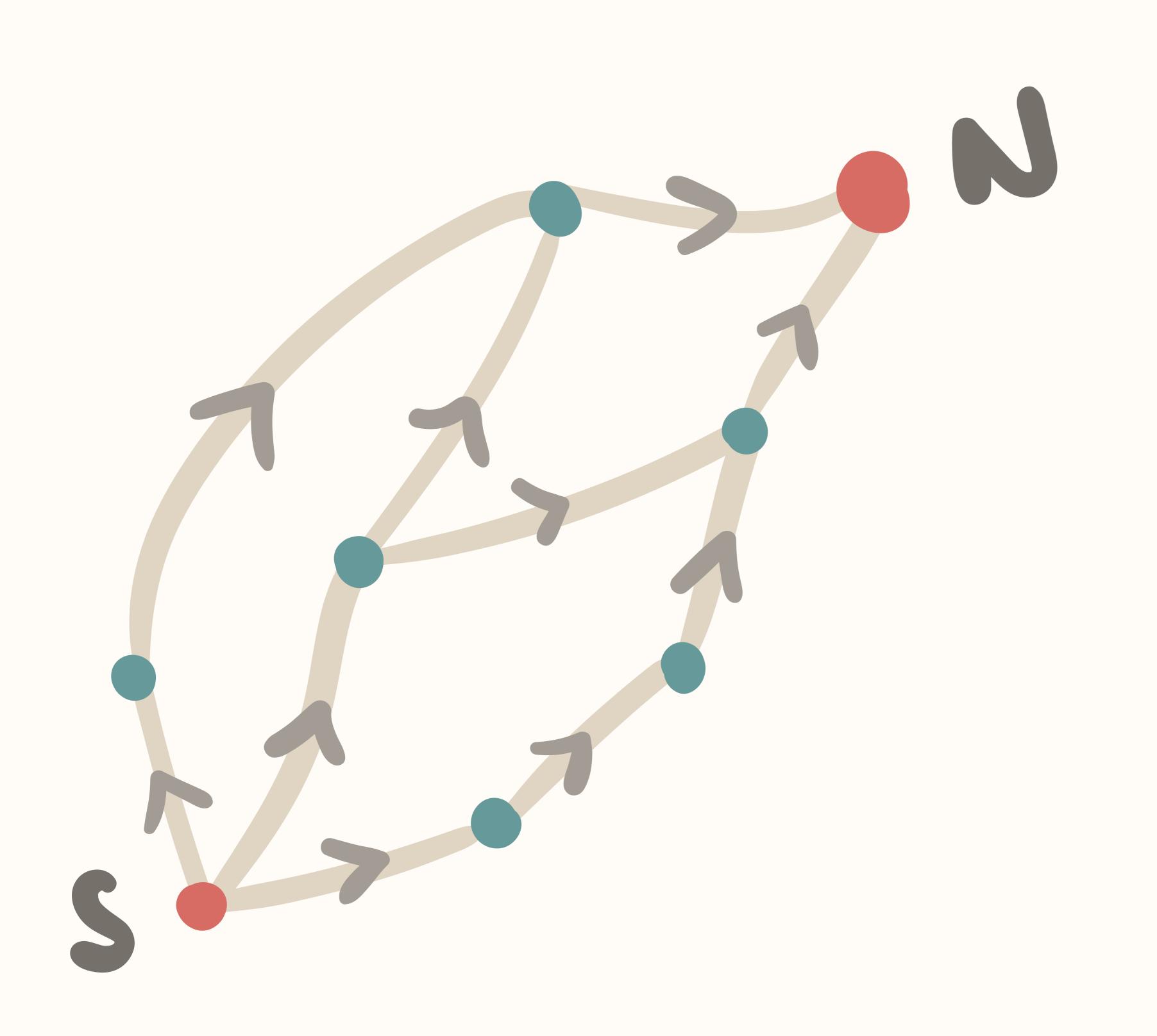
= Bipolar orientation
No multiple edge



Poset (plane bipolar poset)

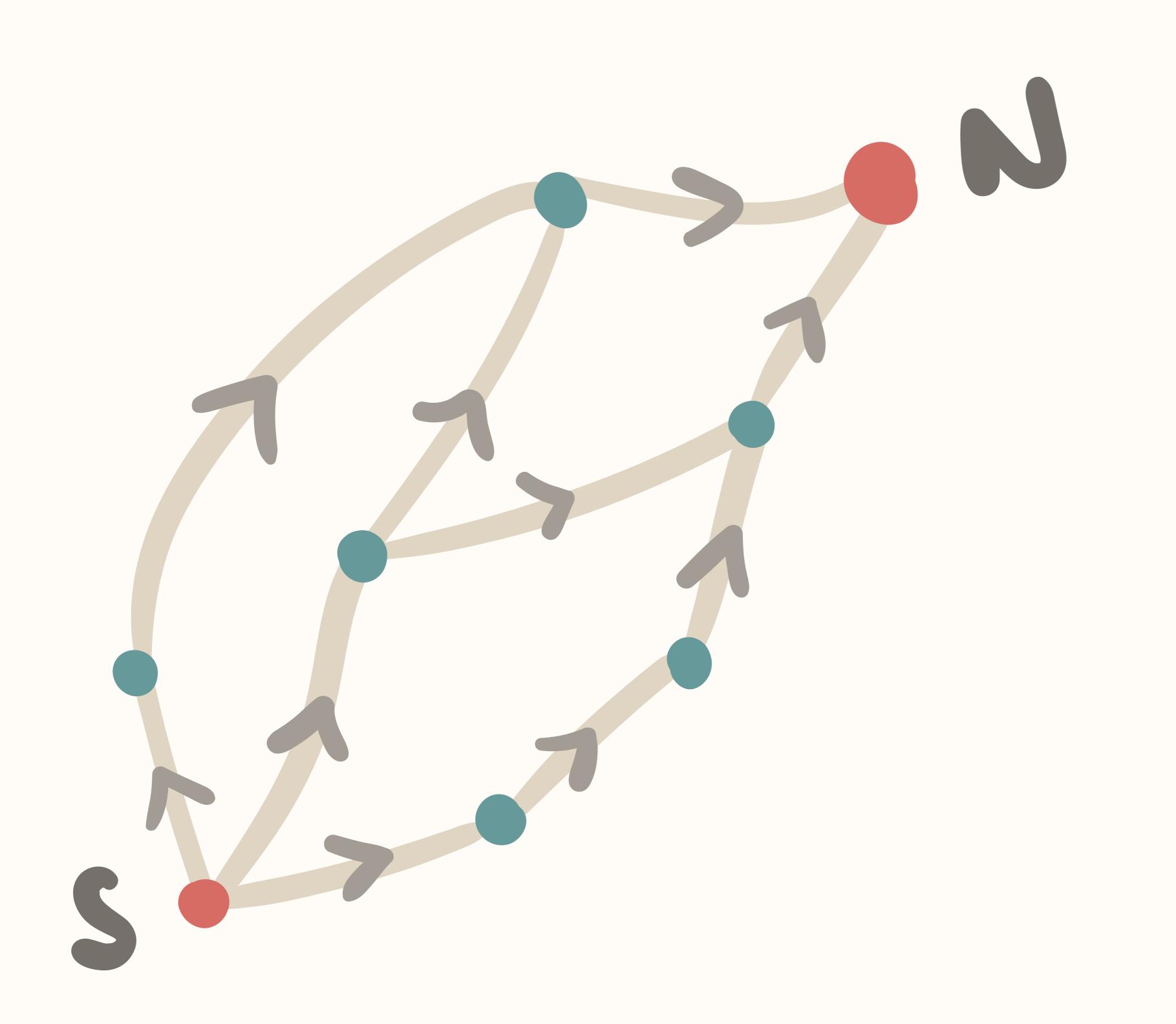
= Bipolar orientation

No multiple edge No transitive edge



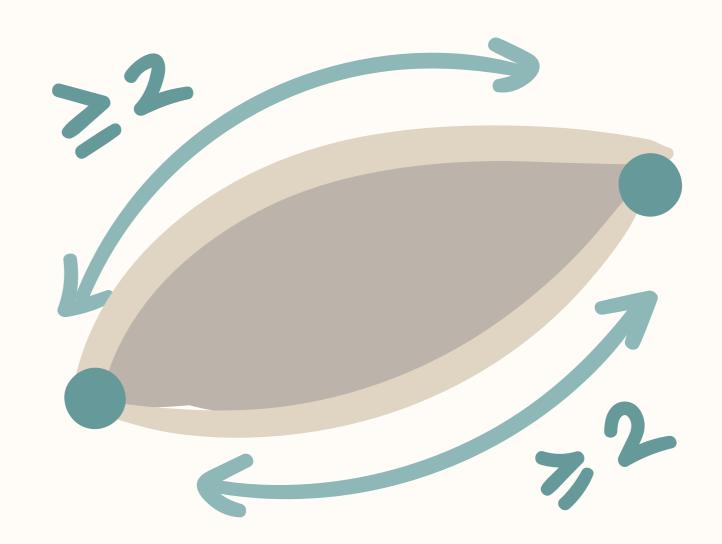
Poset (plane bipolar poset)

= Bipolar
orientation
No multiple edge
No transitive edge



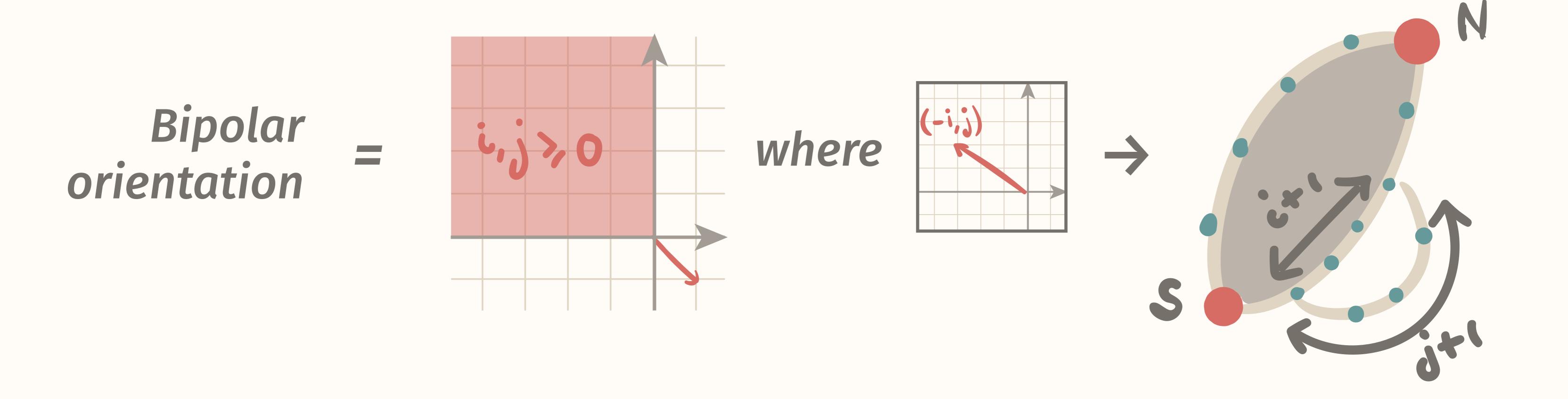
Poset (plane bipolar poset)

- = Bipolar
 orientation
 No multiple edge
 No transitive edge
- = Bipolar orientation

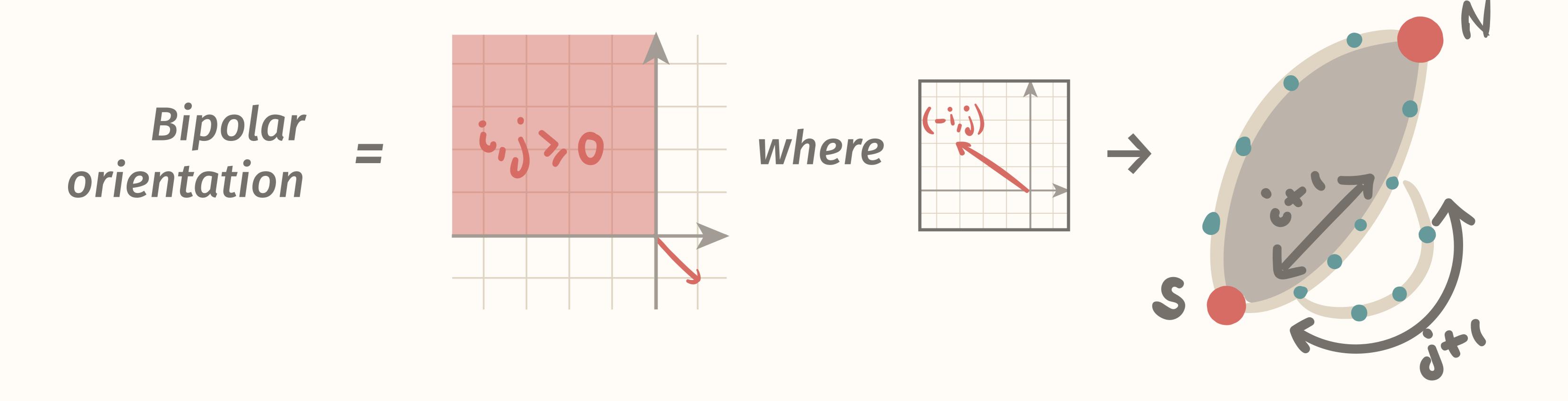


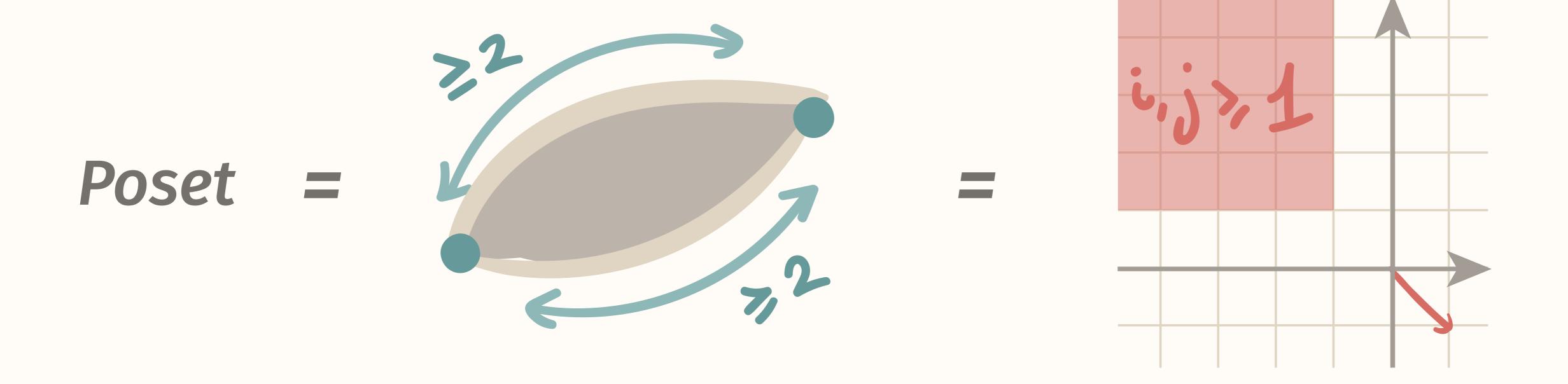
Specialization to Posets

Specialization to Posets



Specialization to Posets





Summany

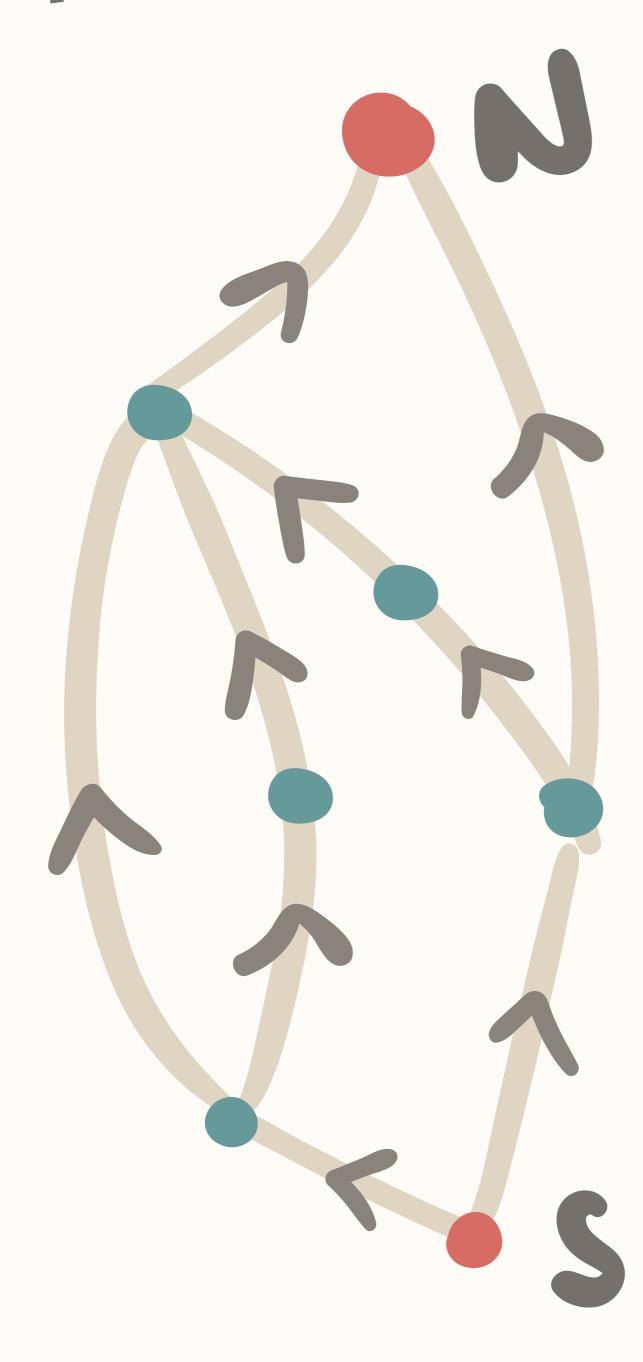
Maps and decorated maps

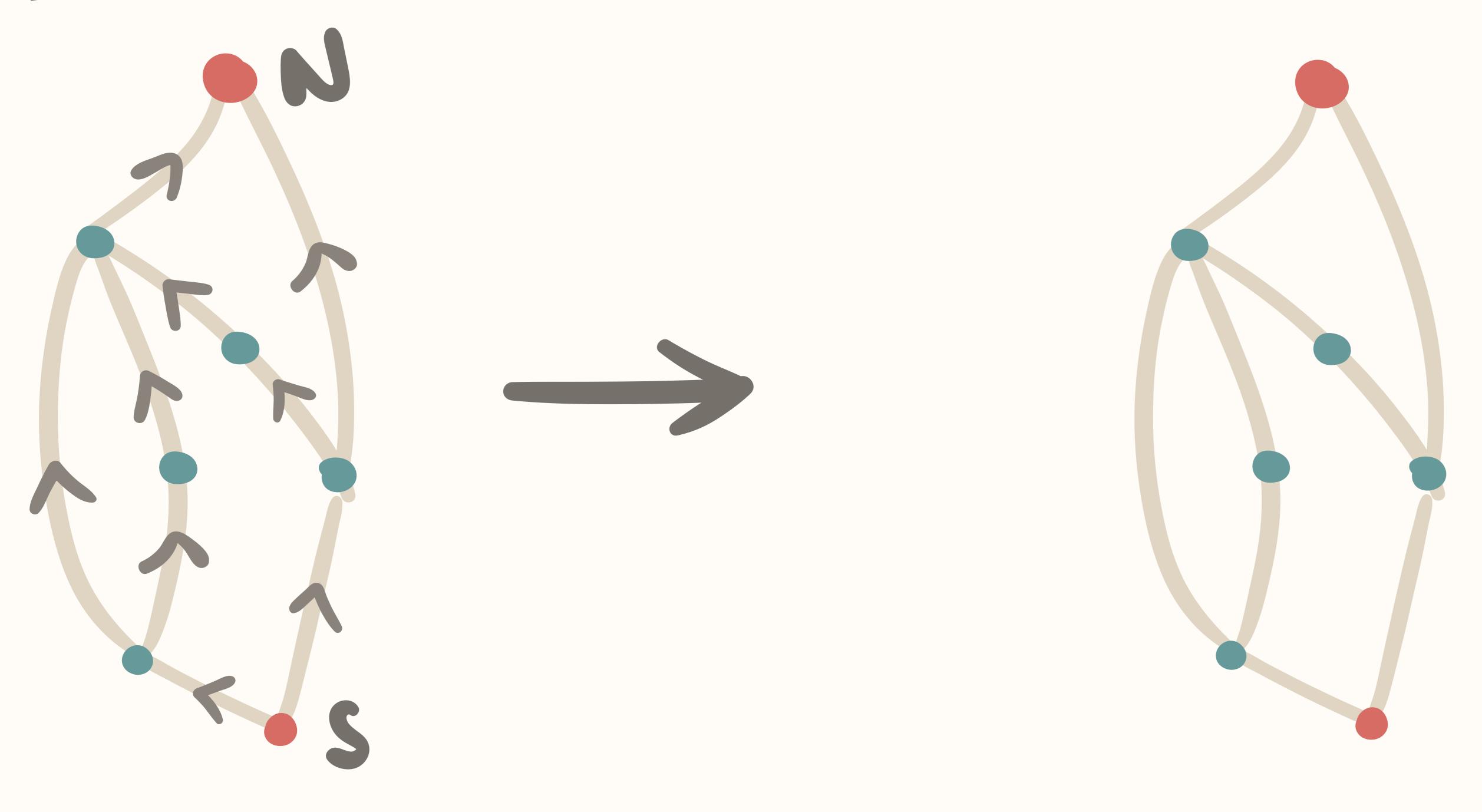
1. Bijection with quadrant tandem walks

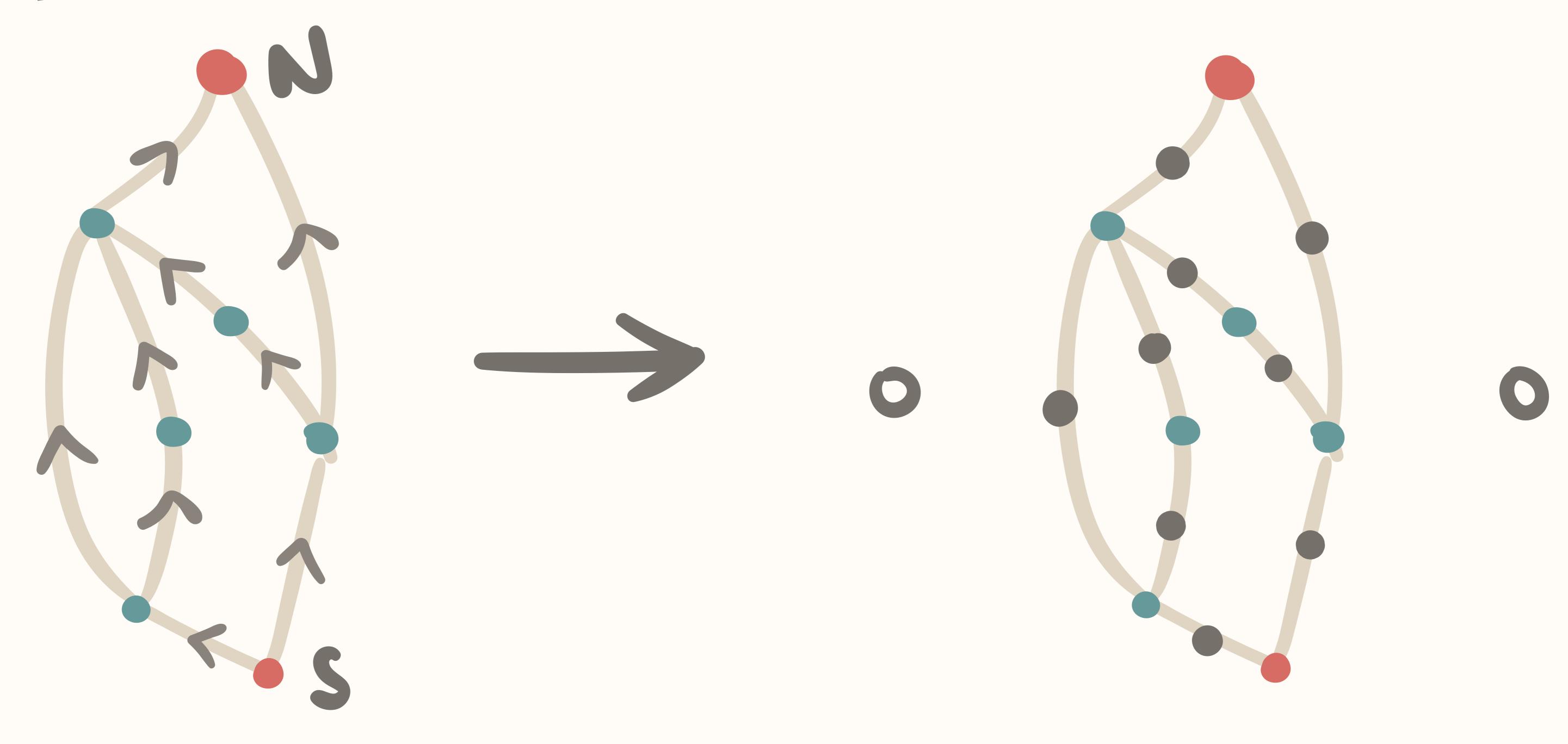
- a. The KMSW bijection
- b. Plane bipolar posets
- c. Plane bipolar posets by vertices
- d. Transversal structures
- 2. Asymptotic enumeration

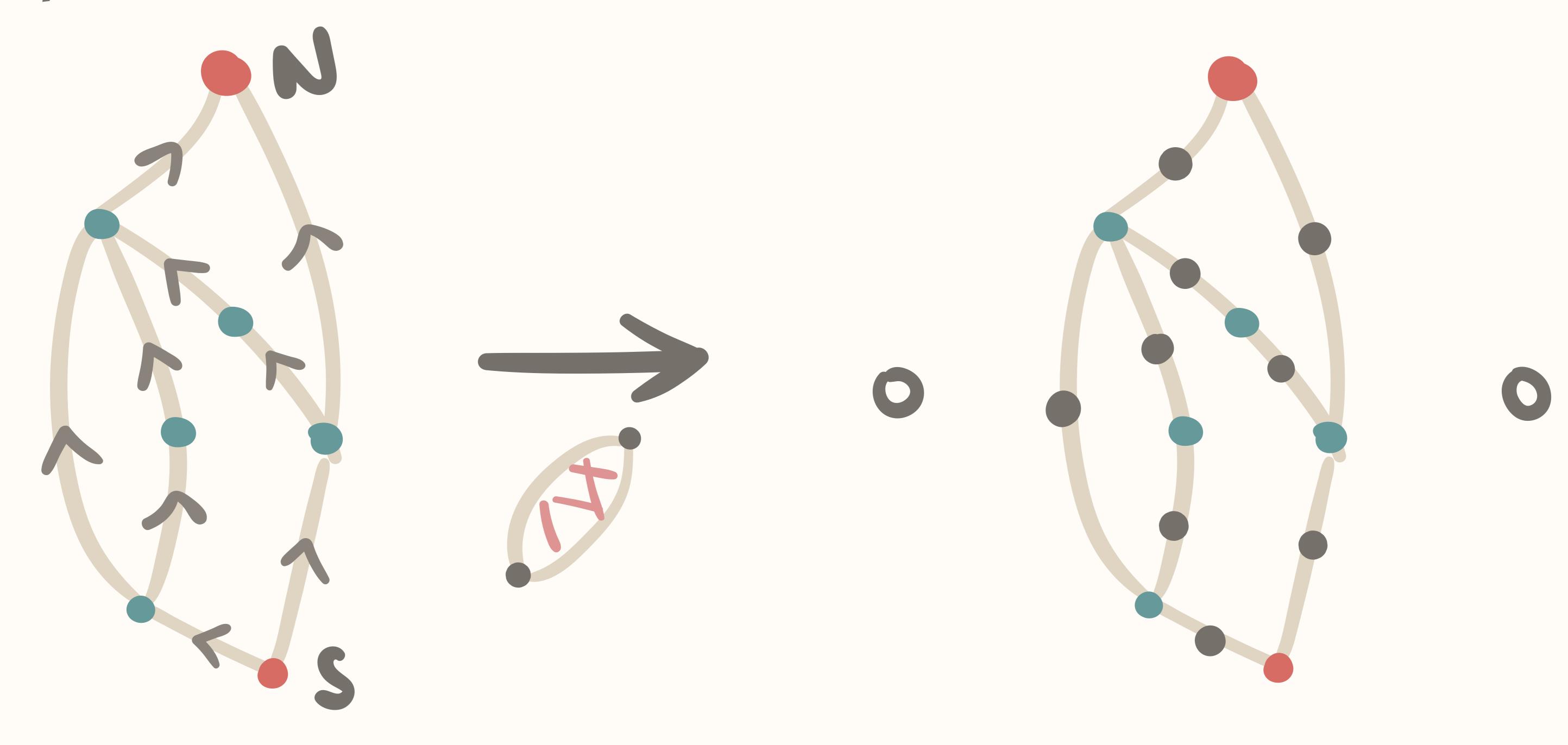
(Digression on plane permutations)

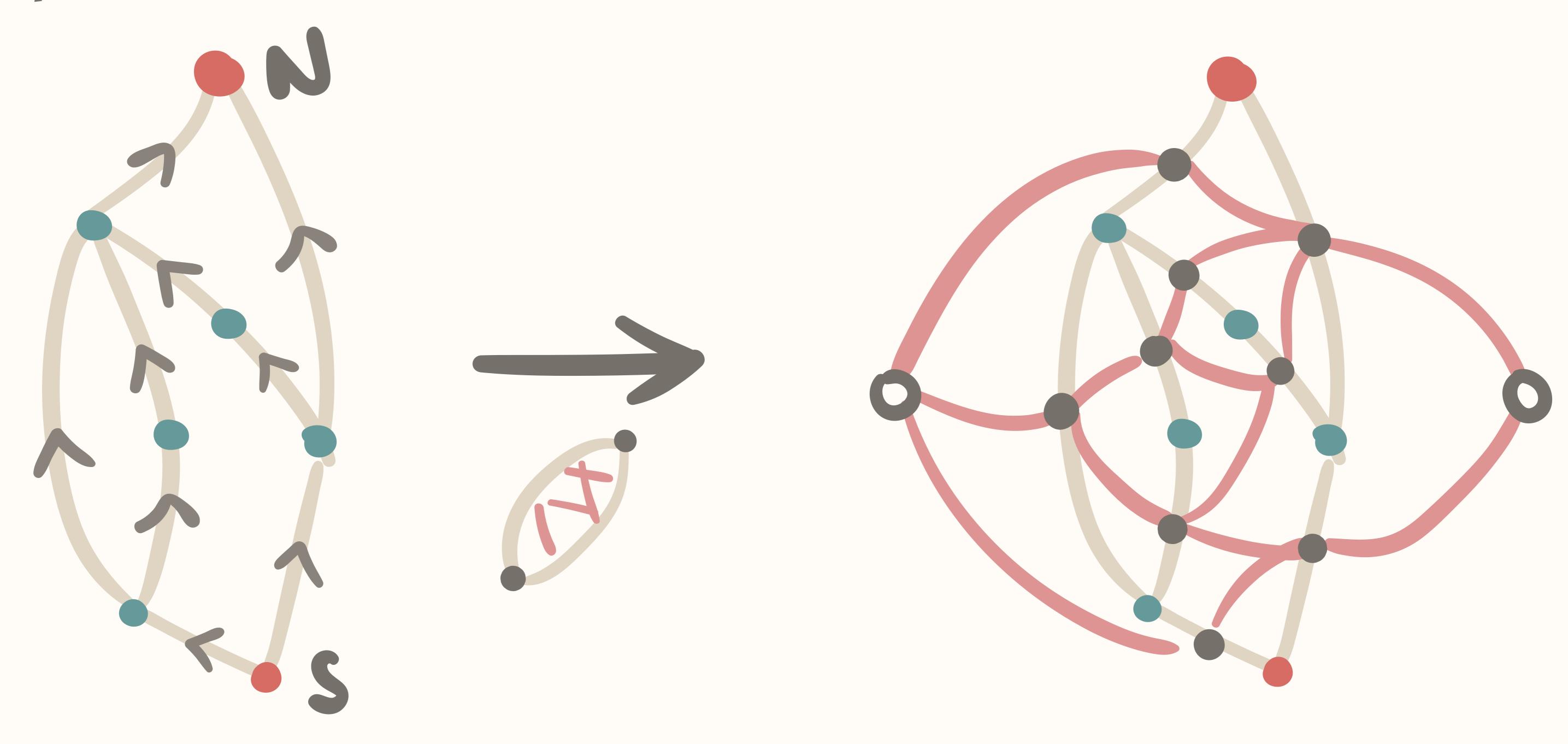
3. Generic transversal structures

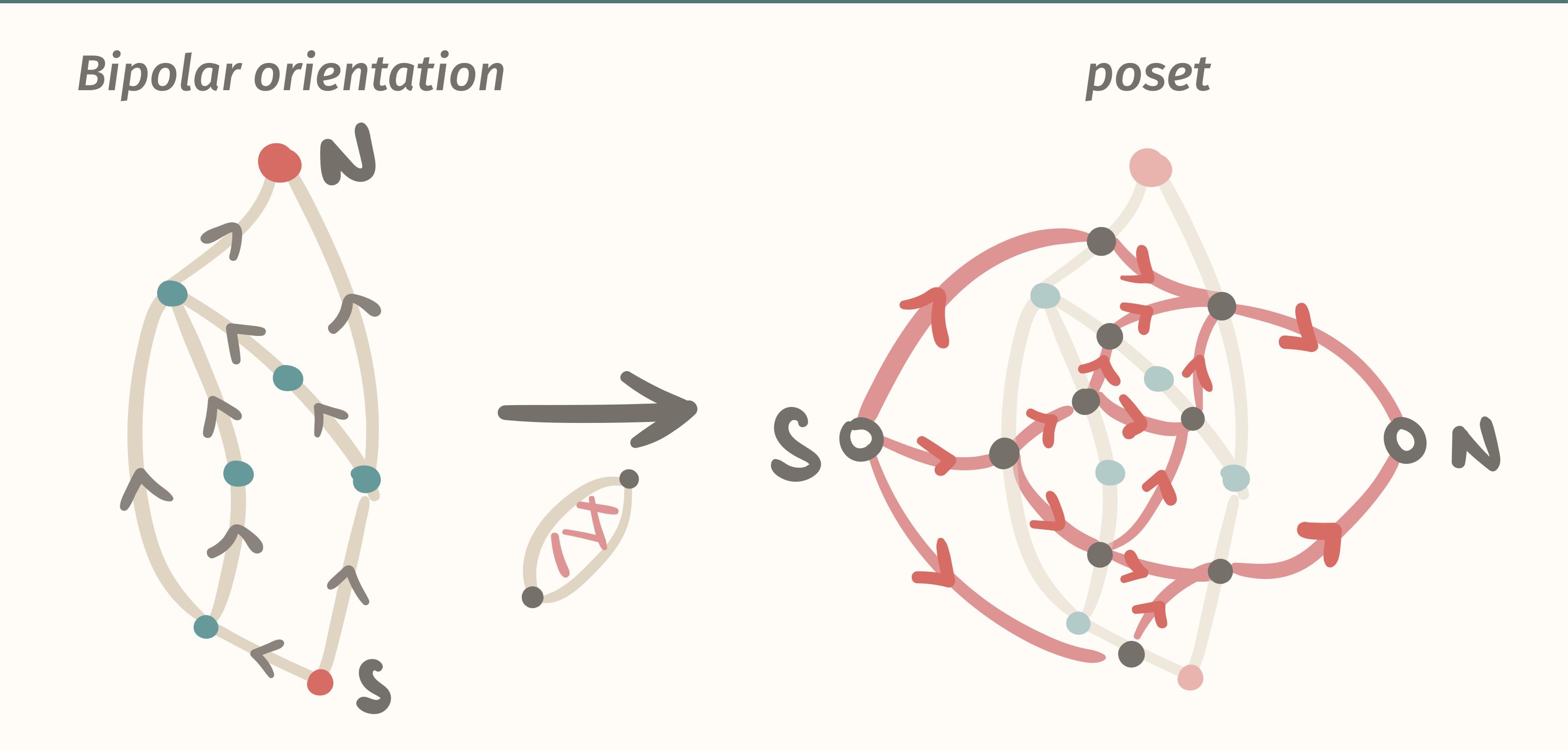


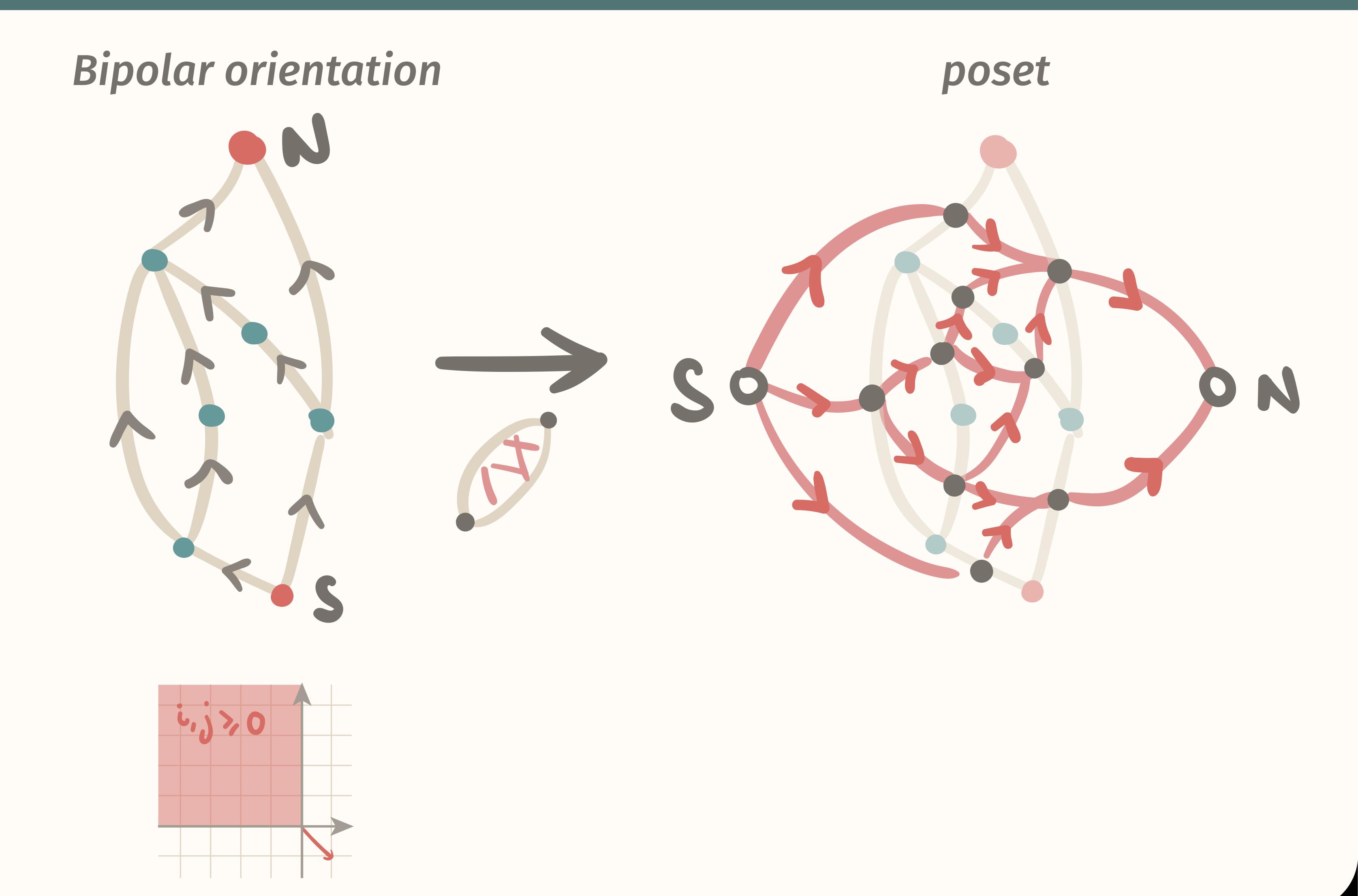


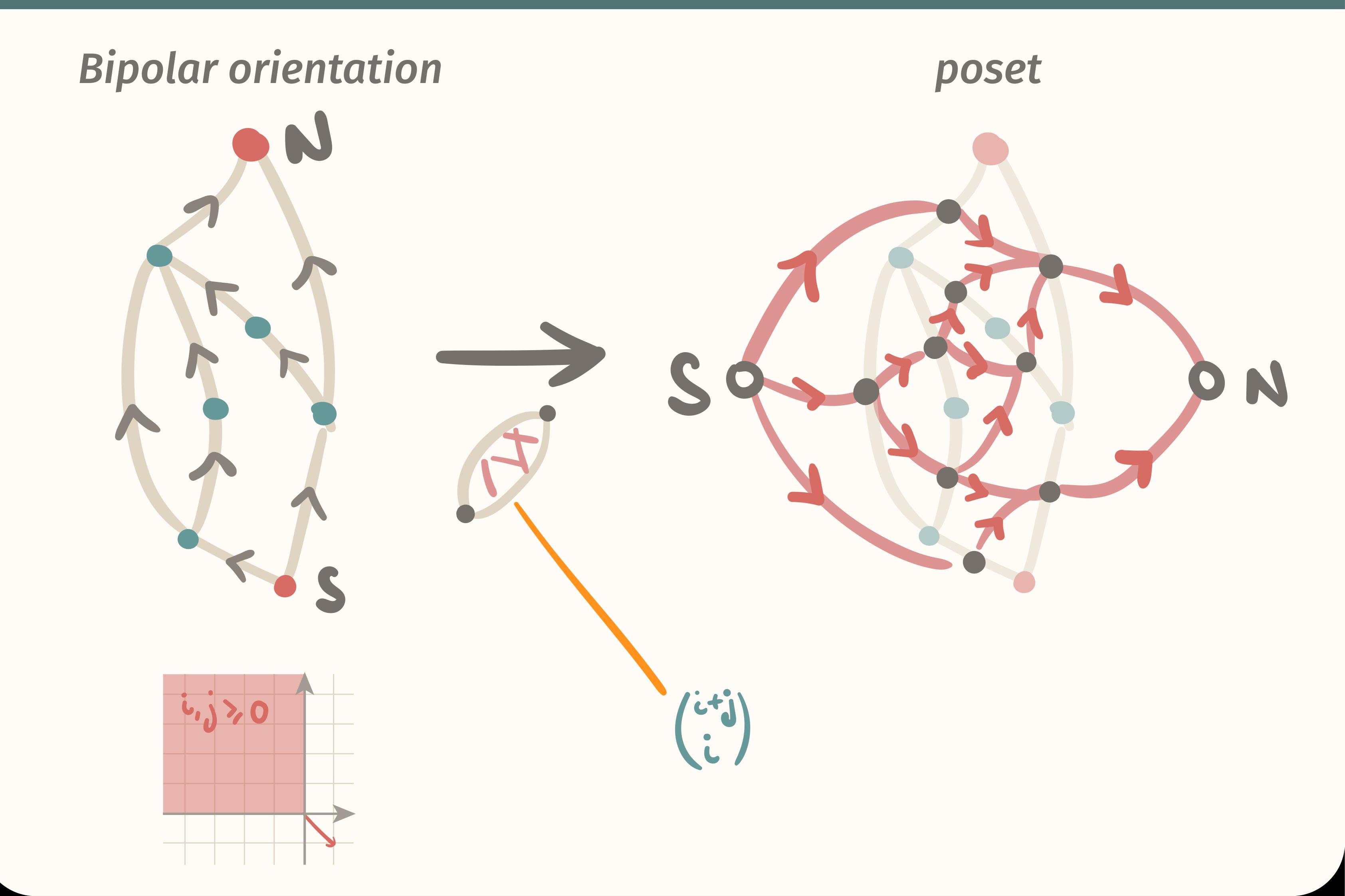


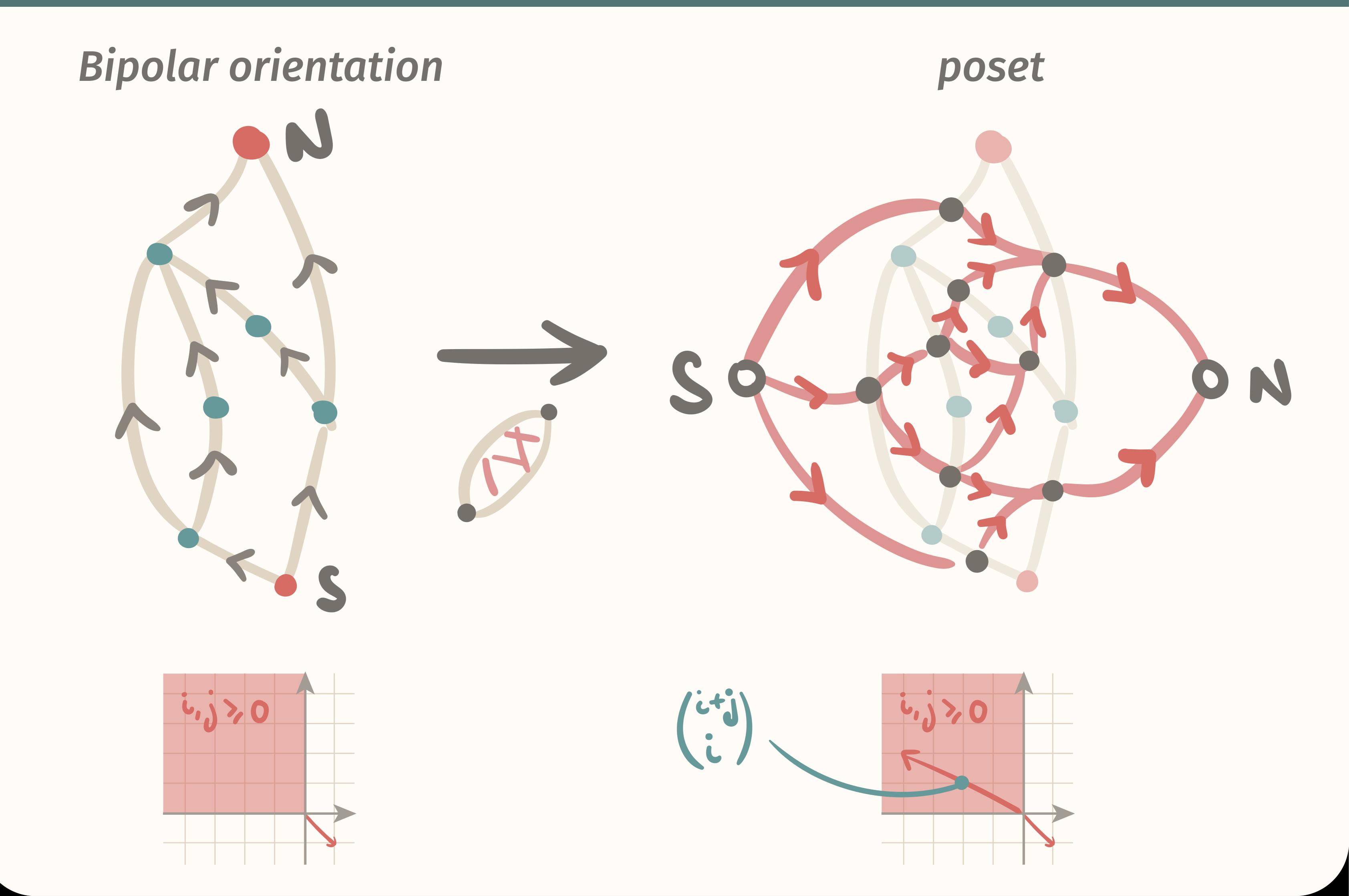












Summumy

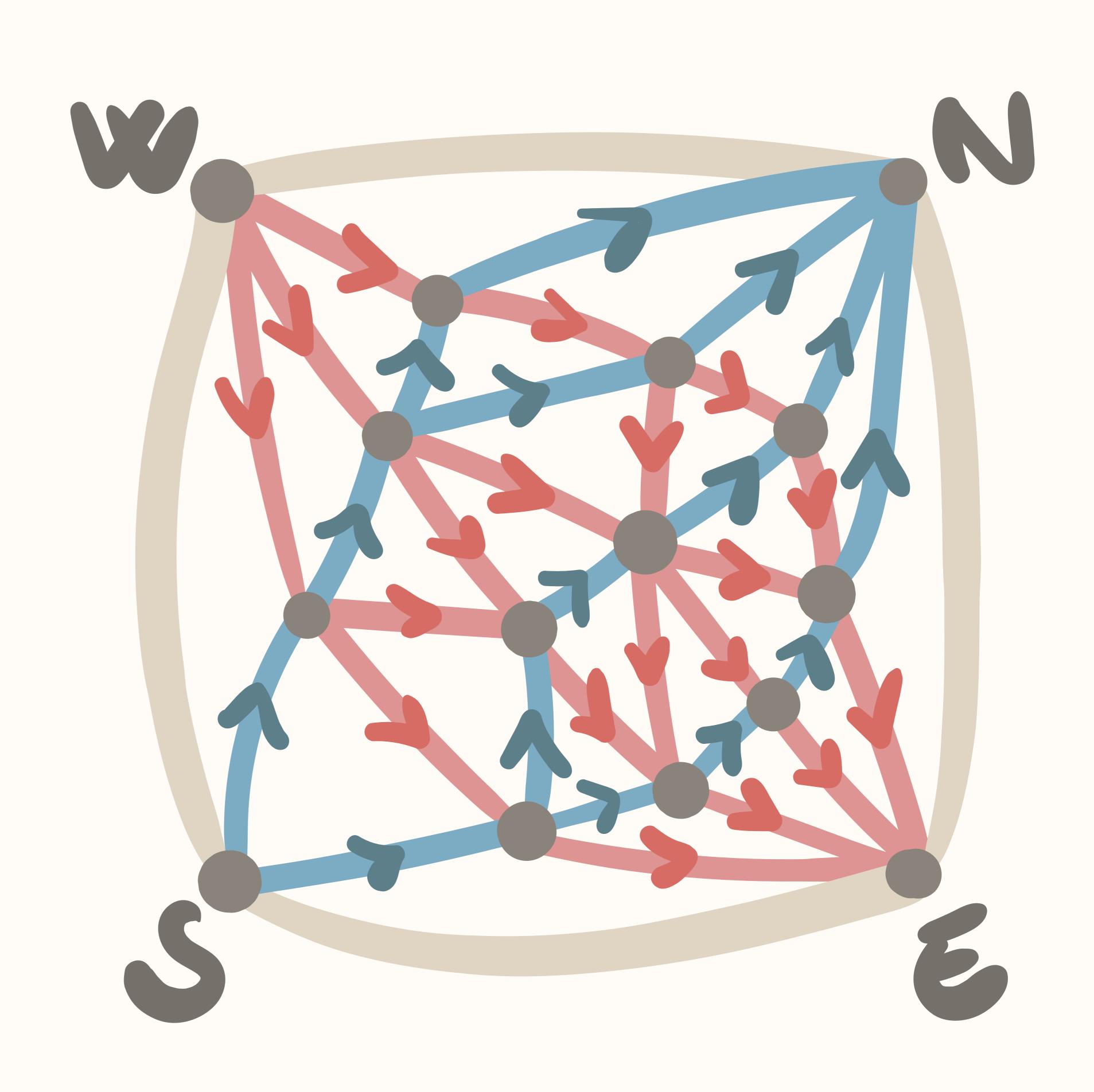
Maps and decorated maps

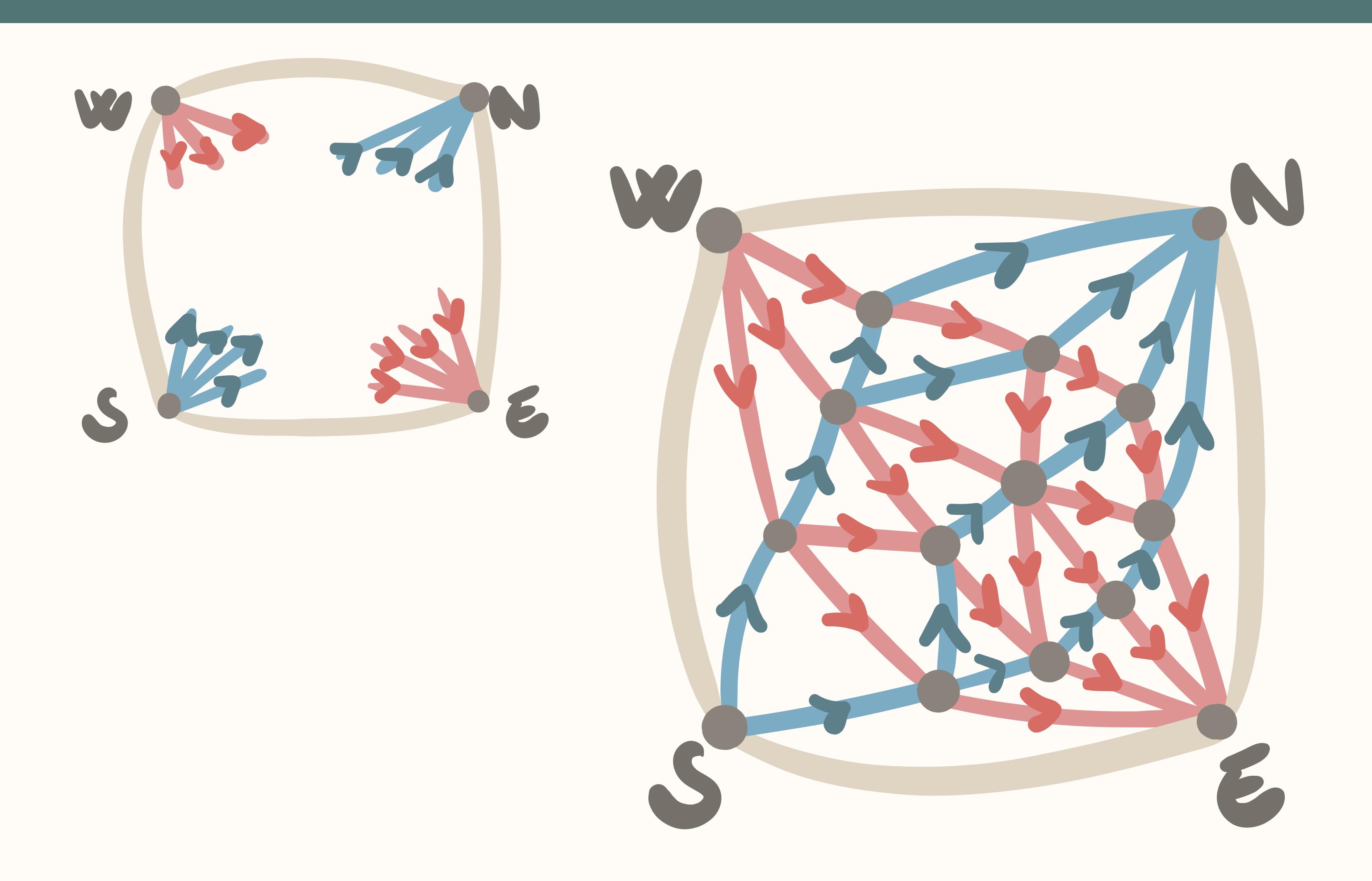
1. Bijection with quadrant tandem walks

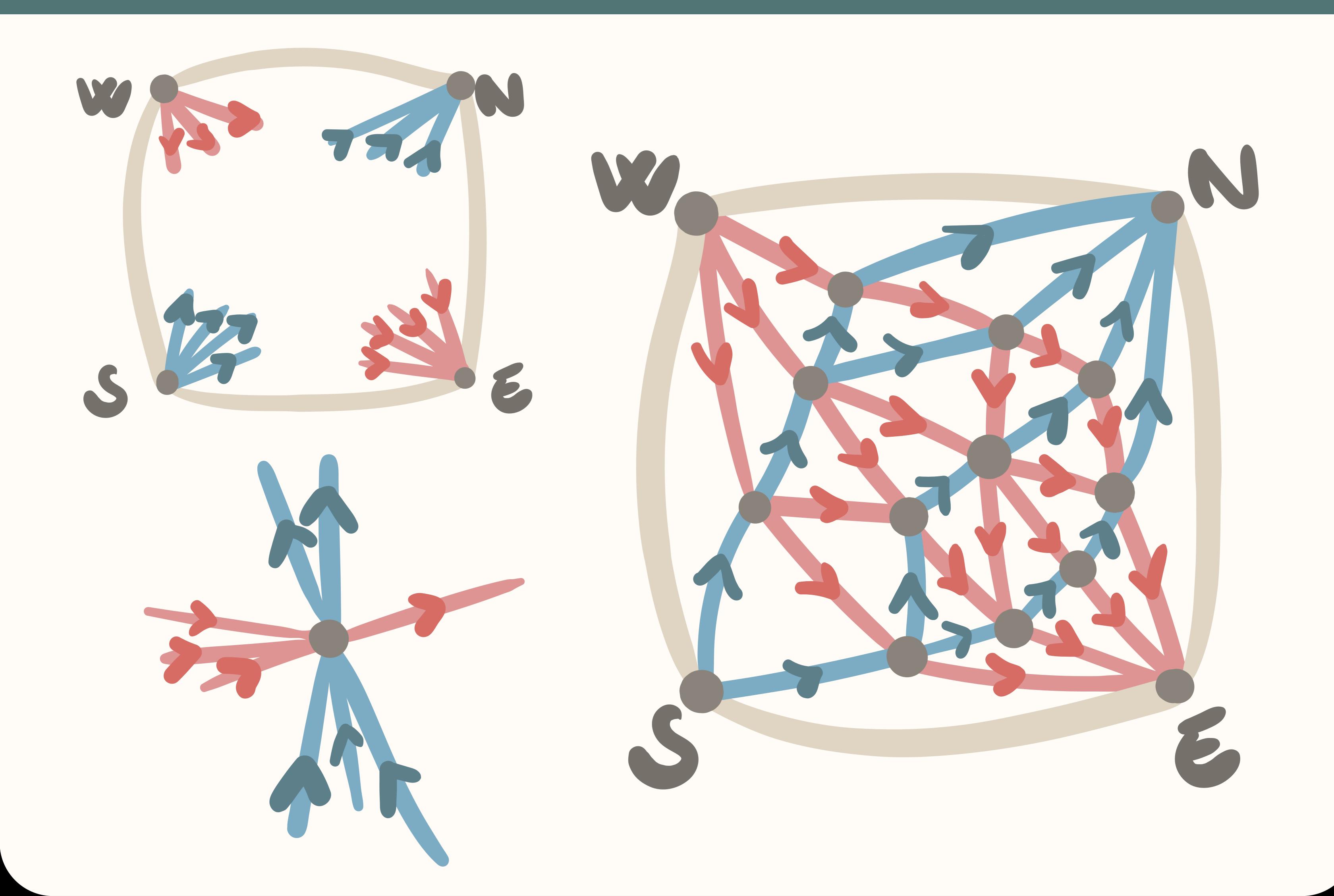
- a. The KMSW bijection
- b. Plane bipolar posets
- c. Plane bipolar posets by vertices
- d. Transversal structures
- 2. Asymptotic enumeration

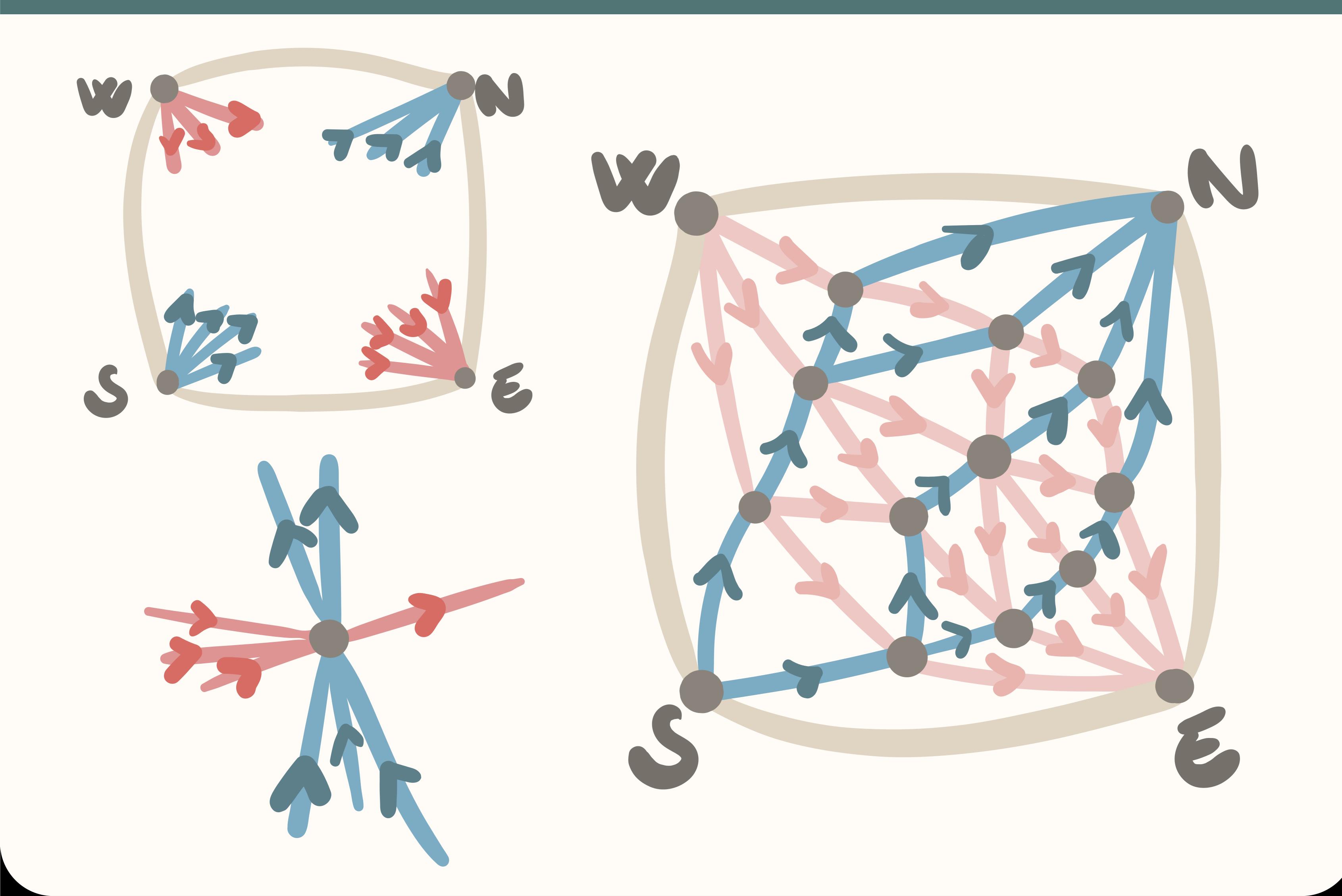
(Digression on plane permutations)

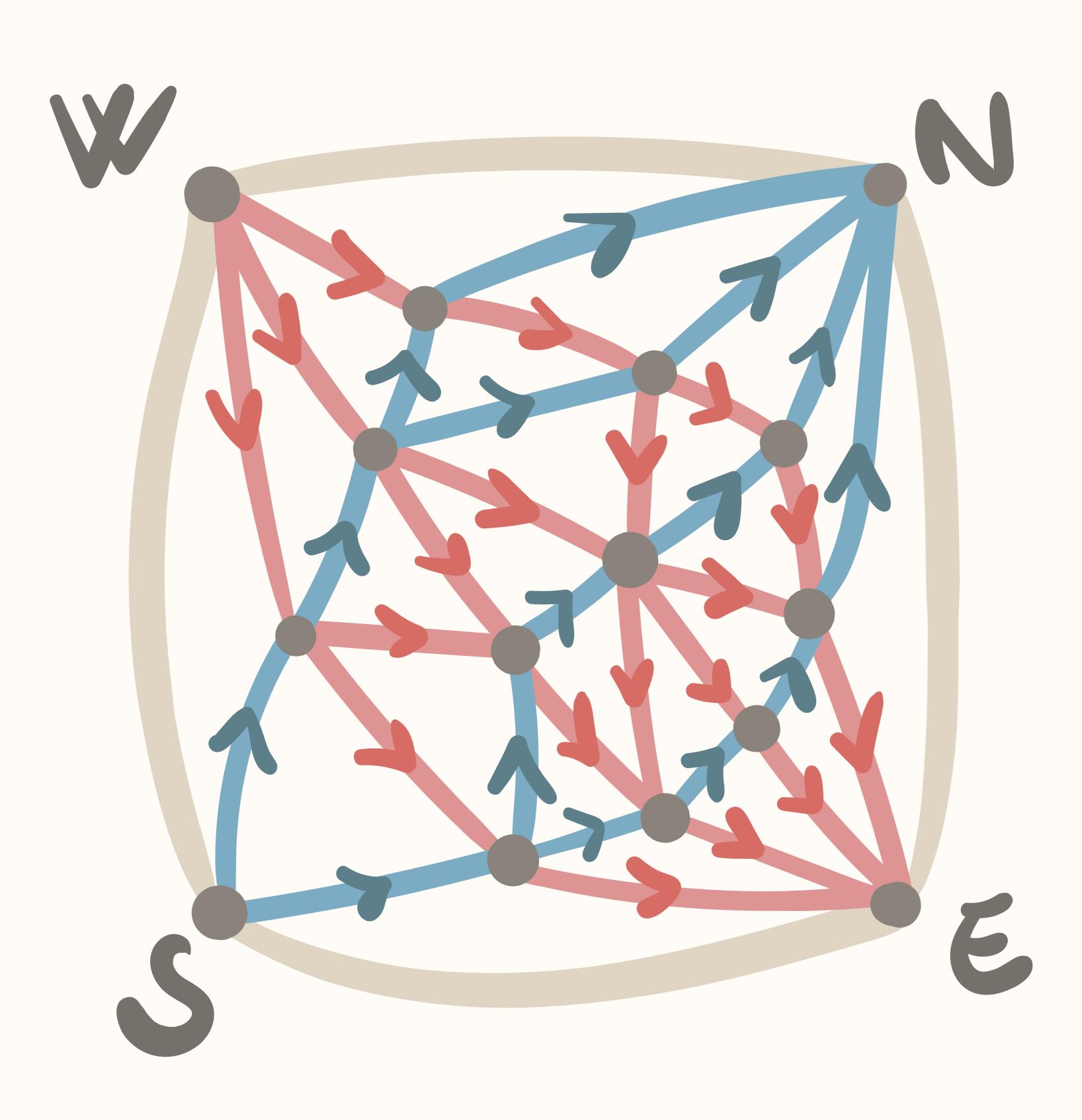
3. Generic transversal structures

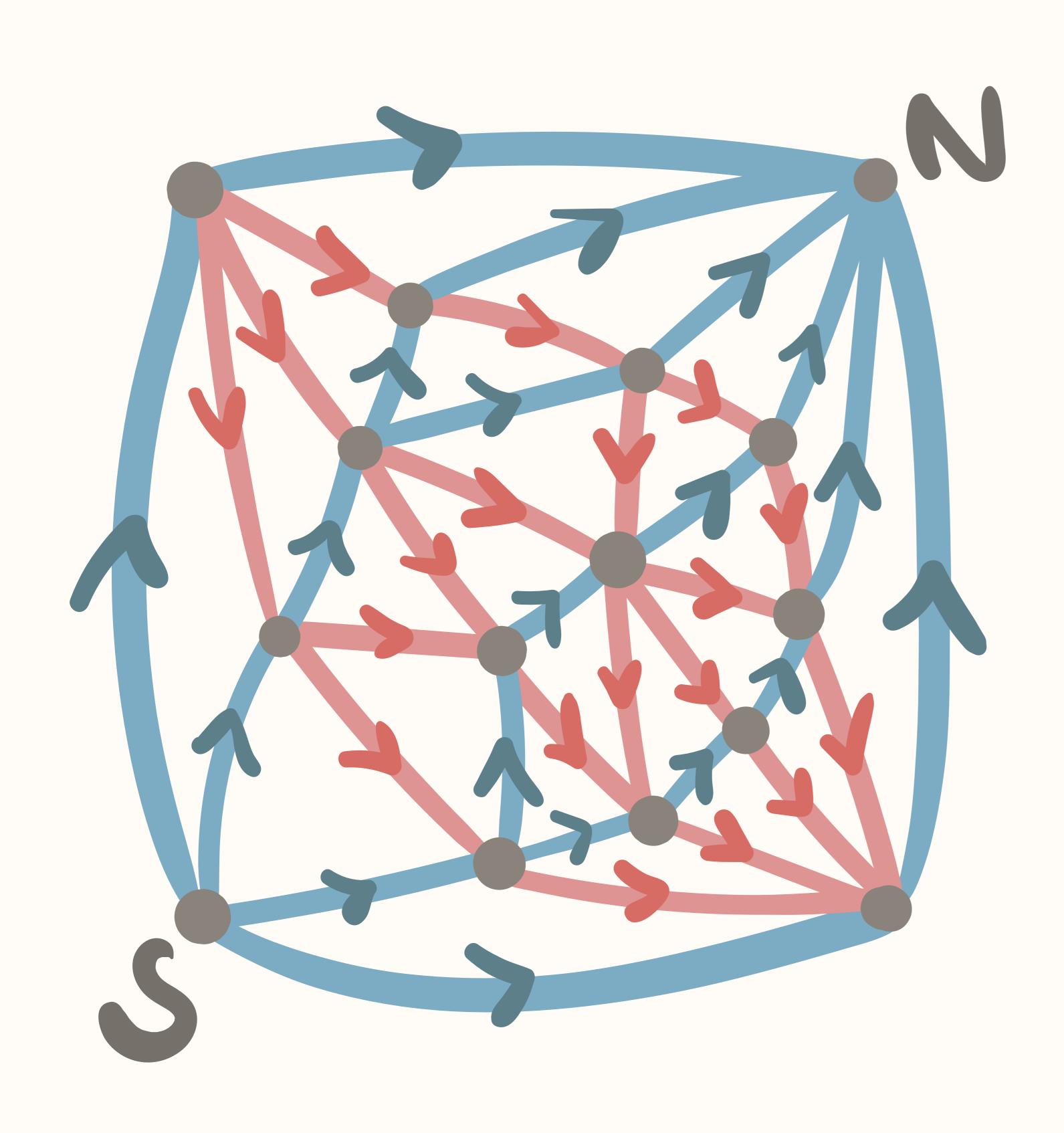


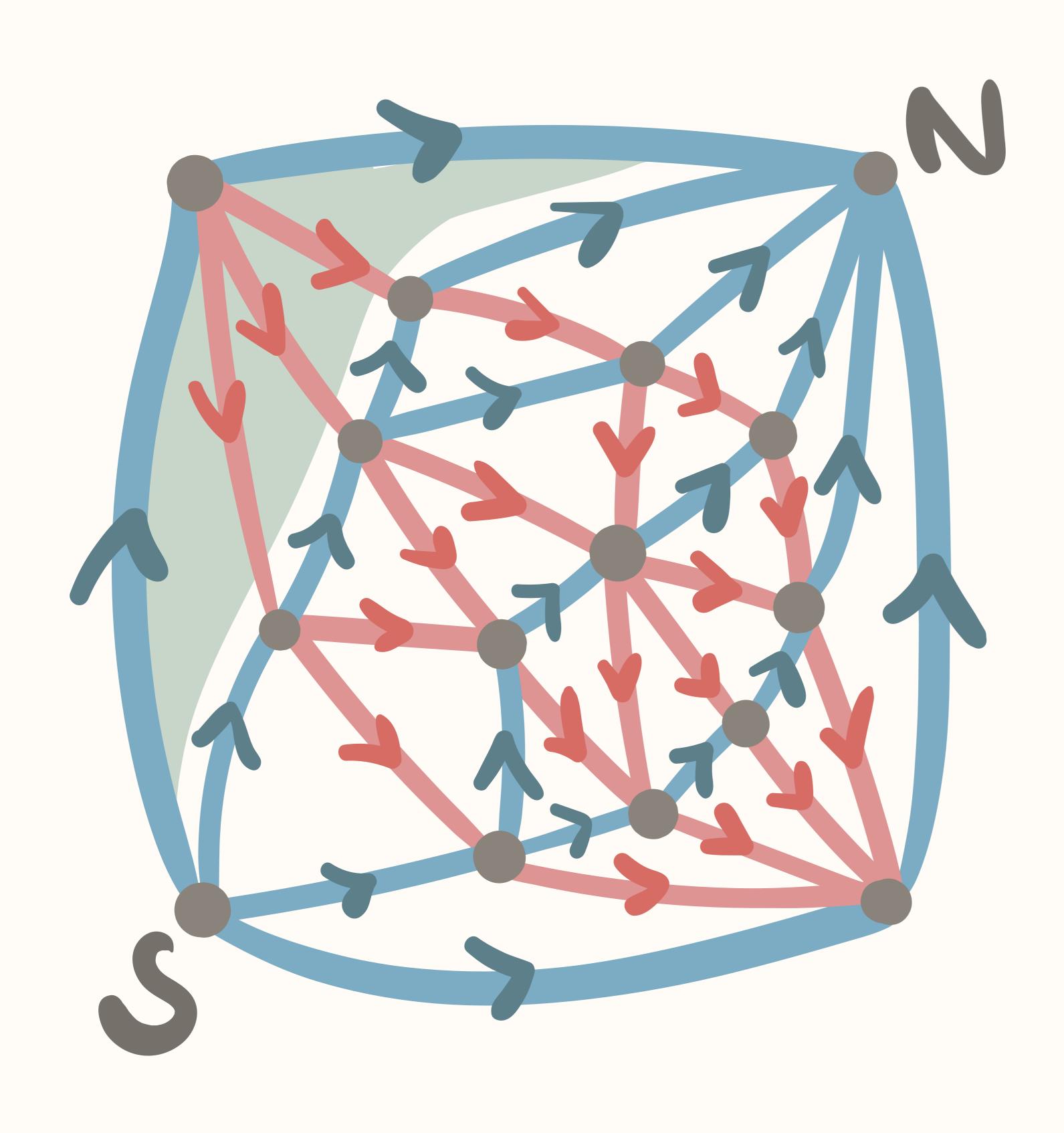


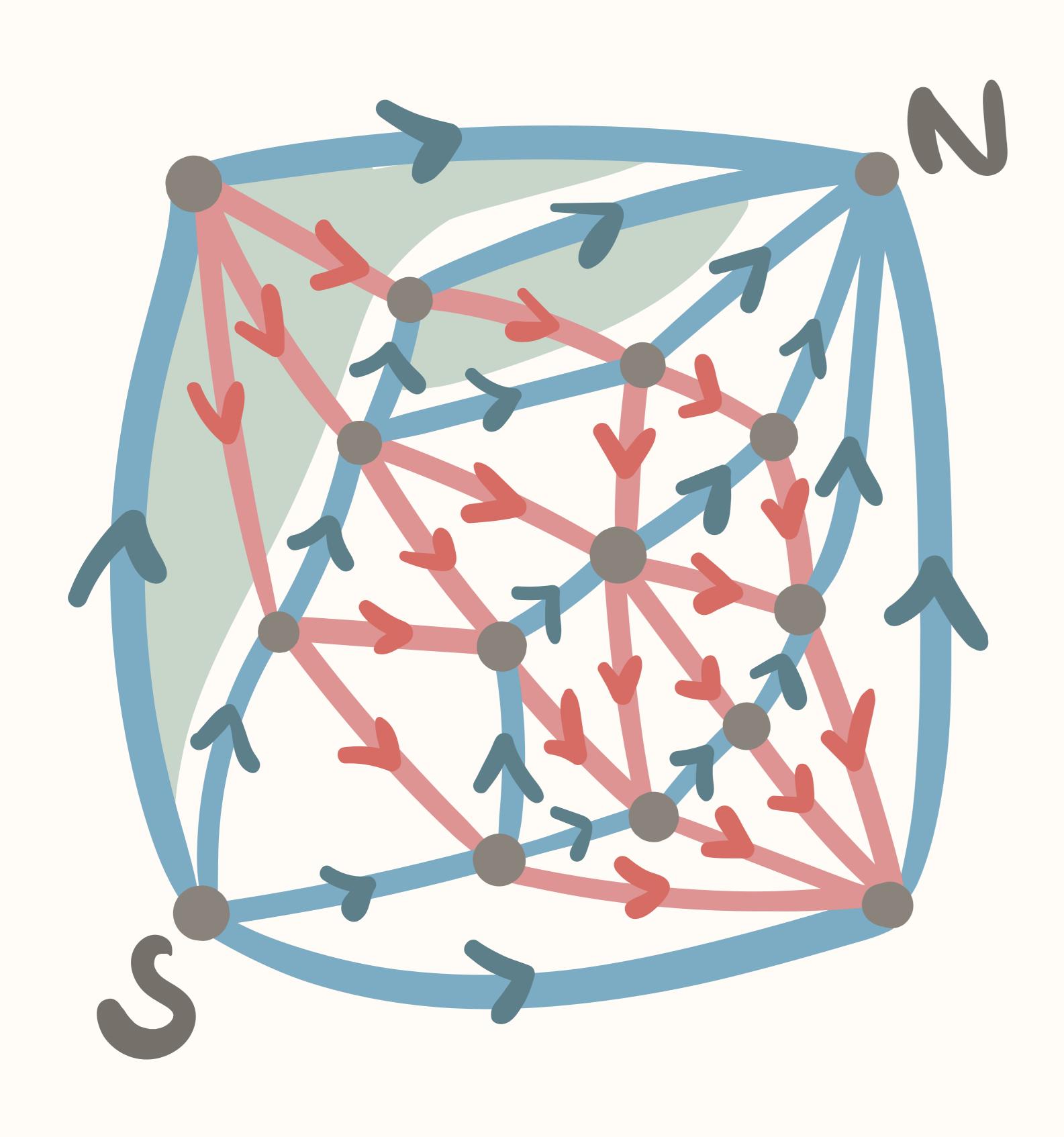


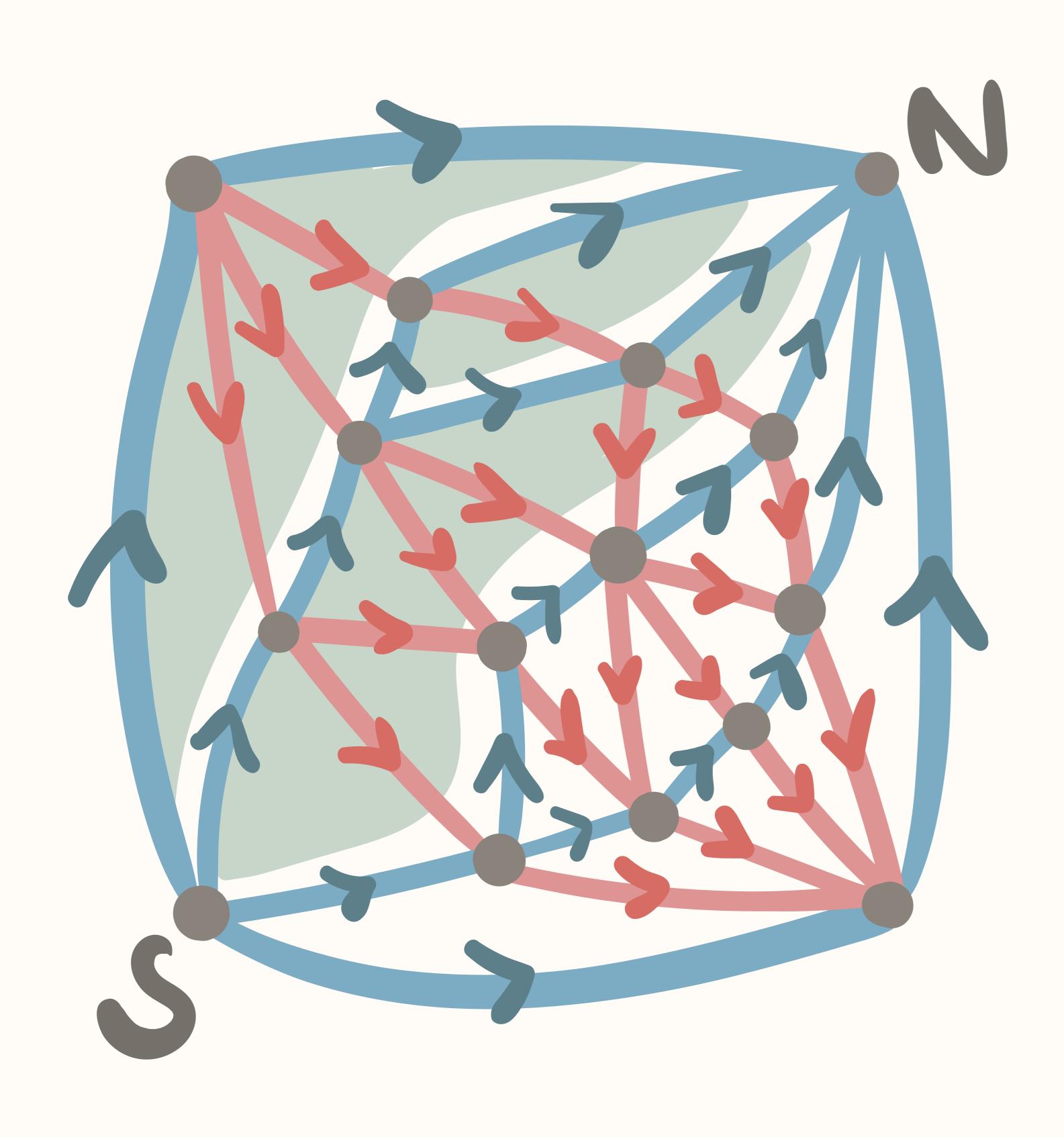


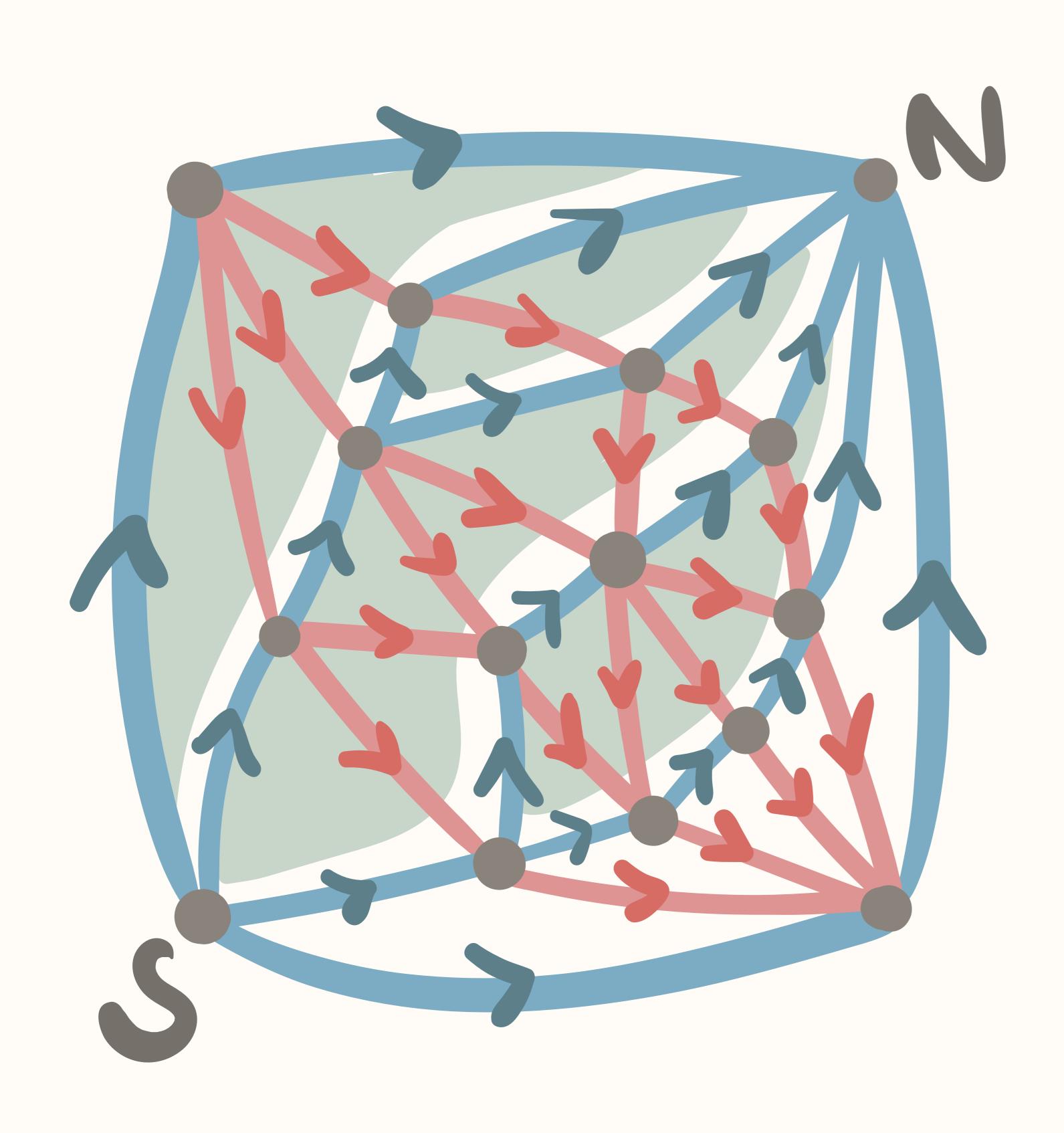


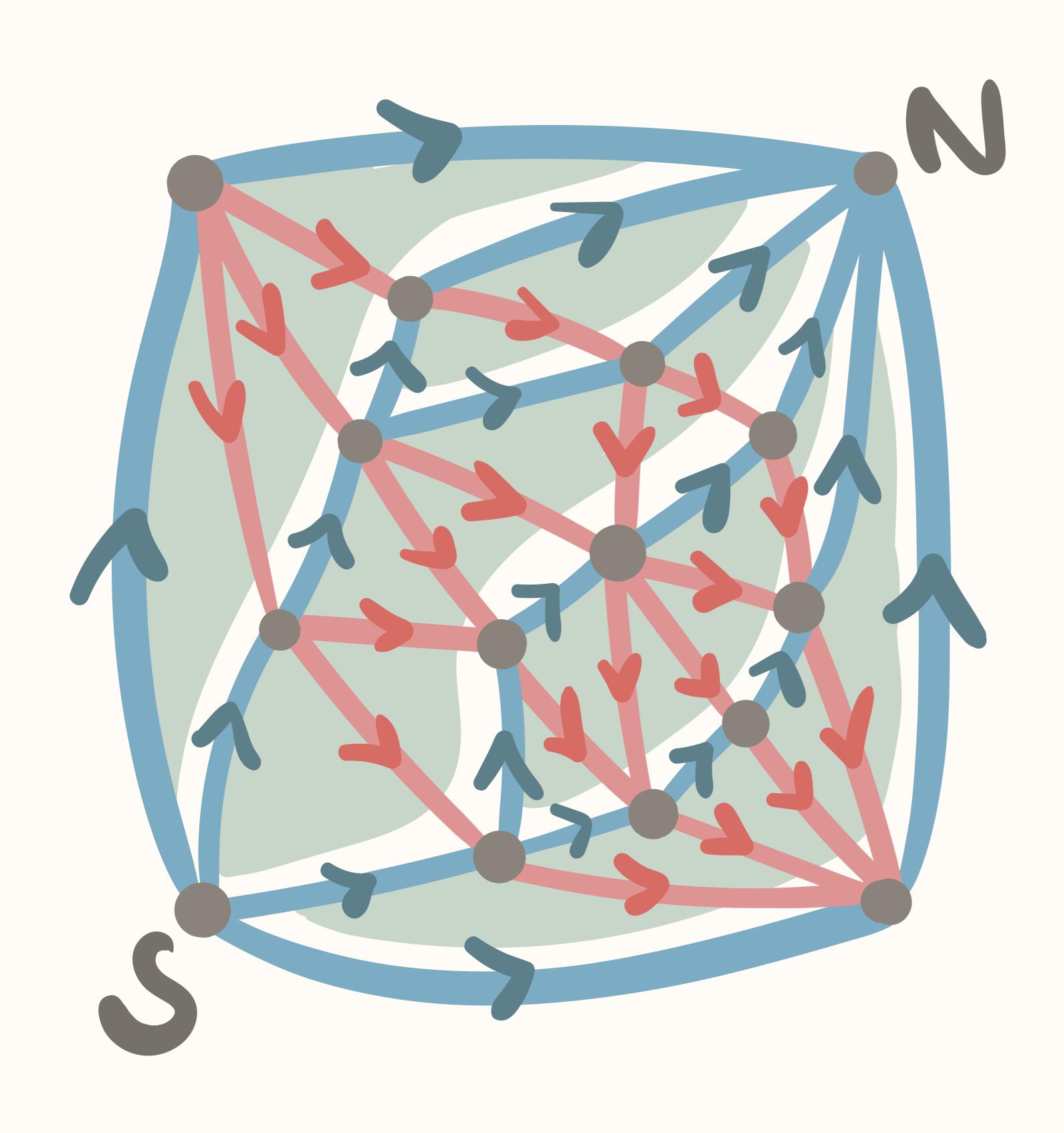


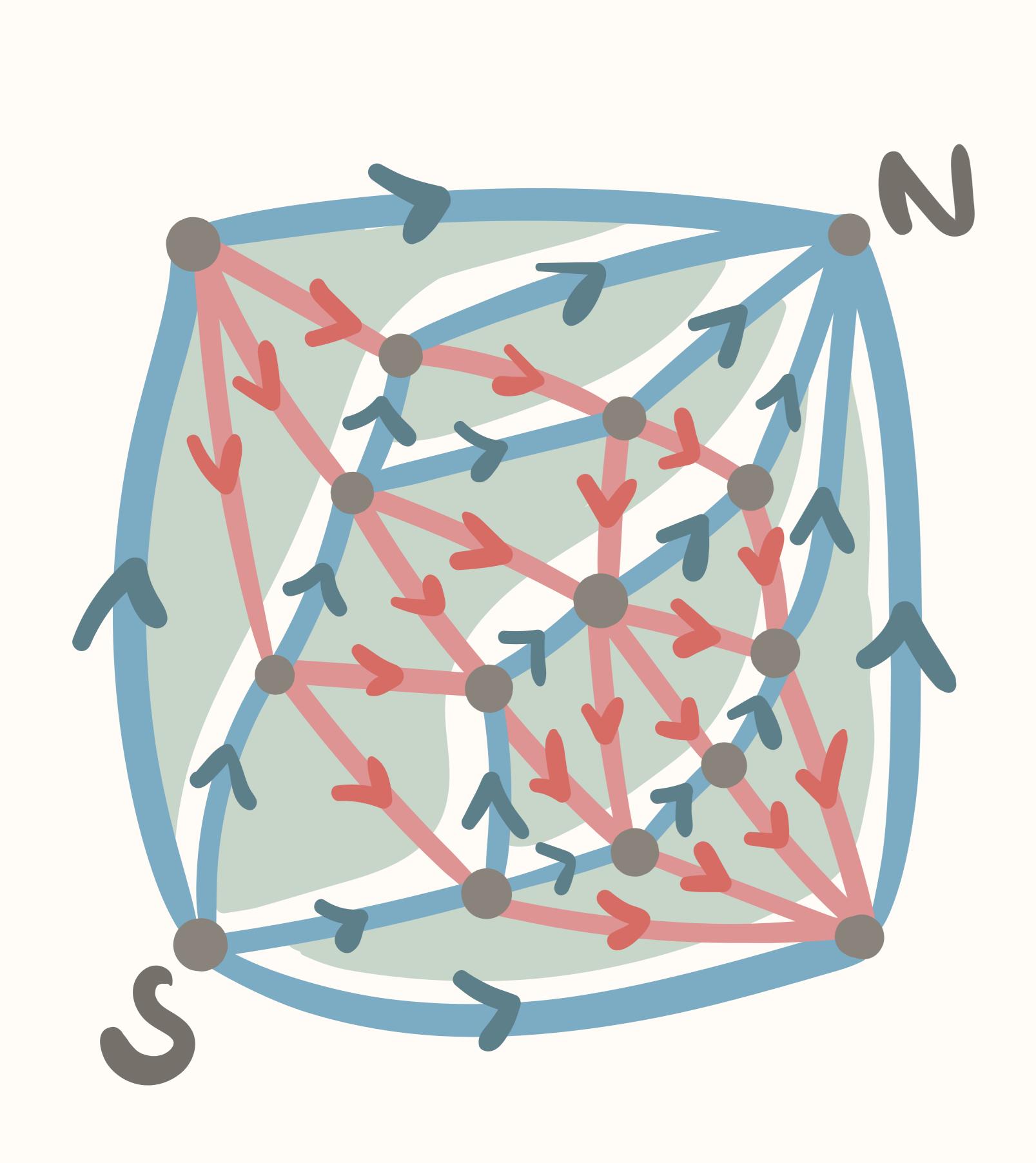


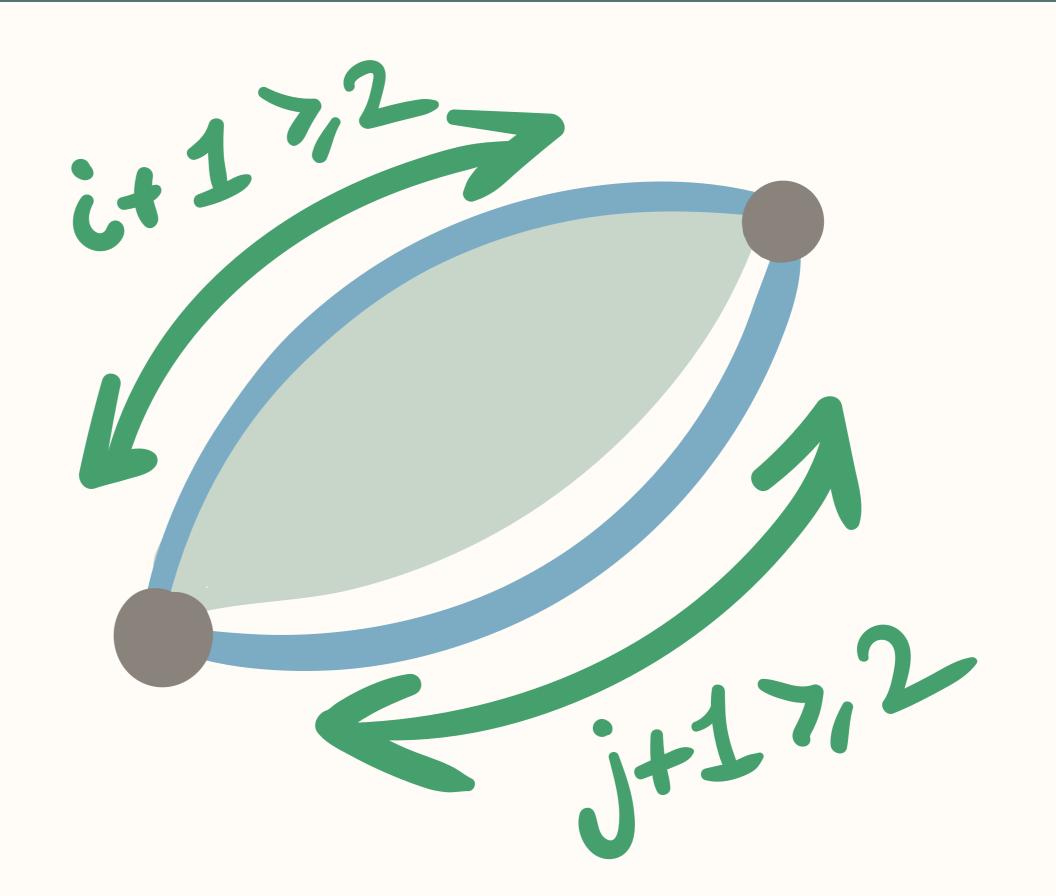


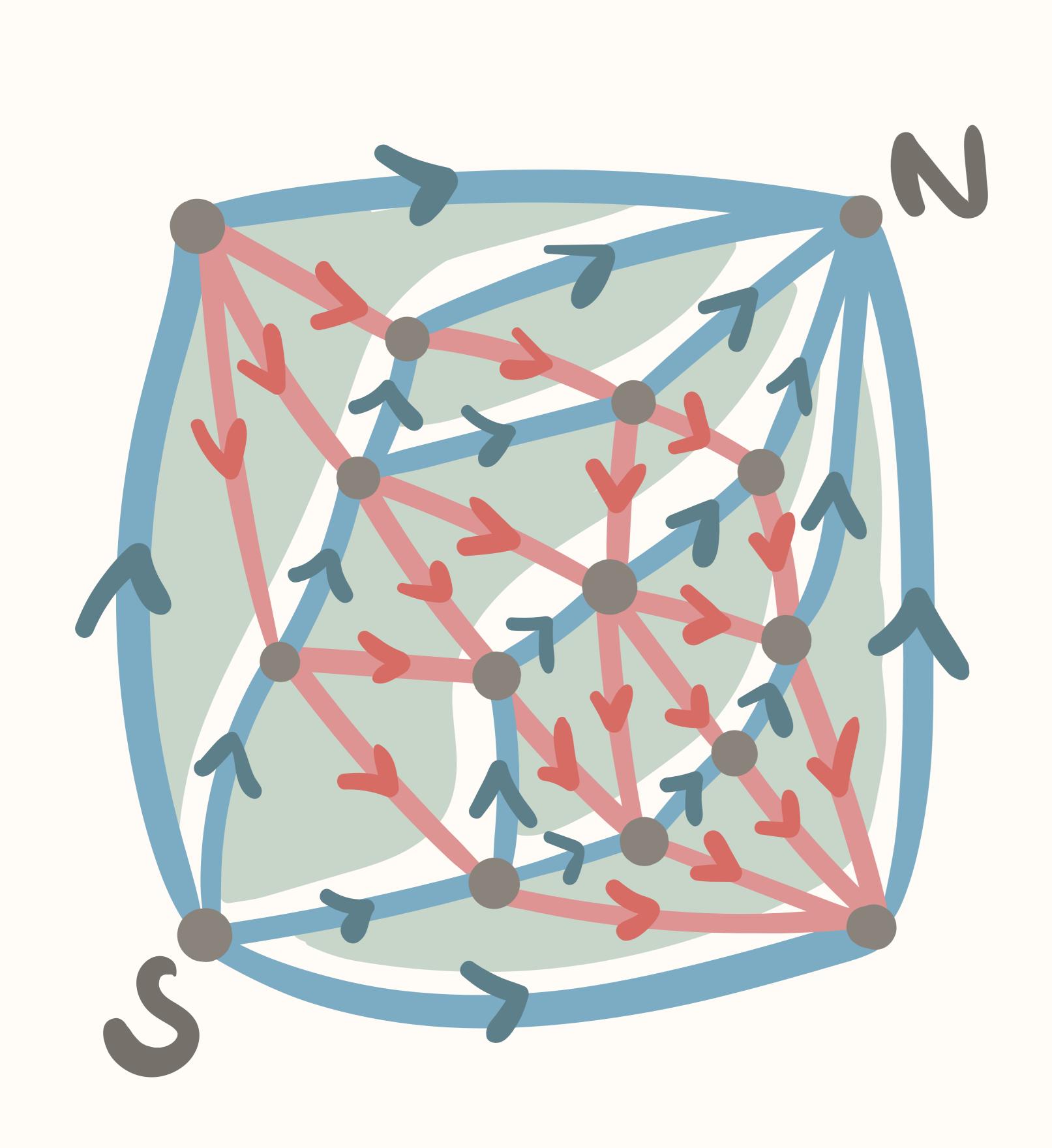


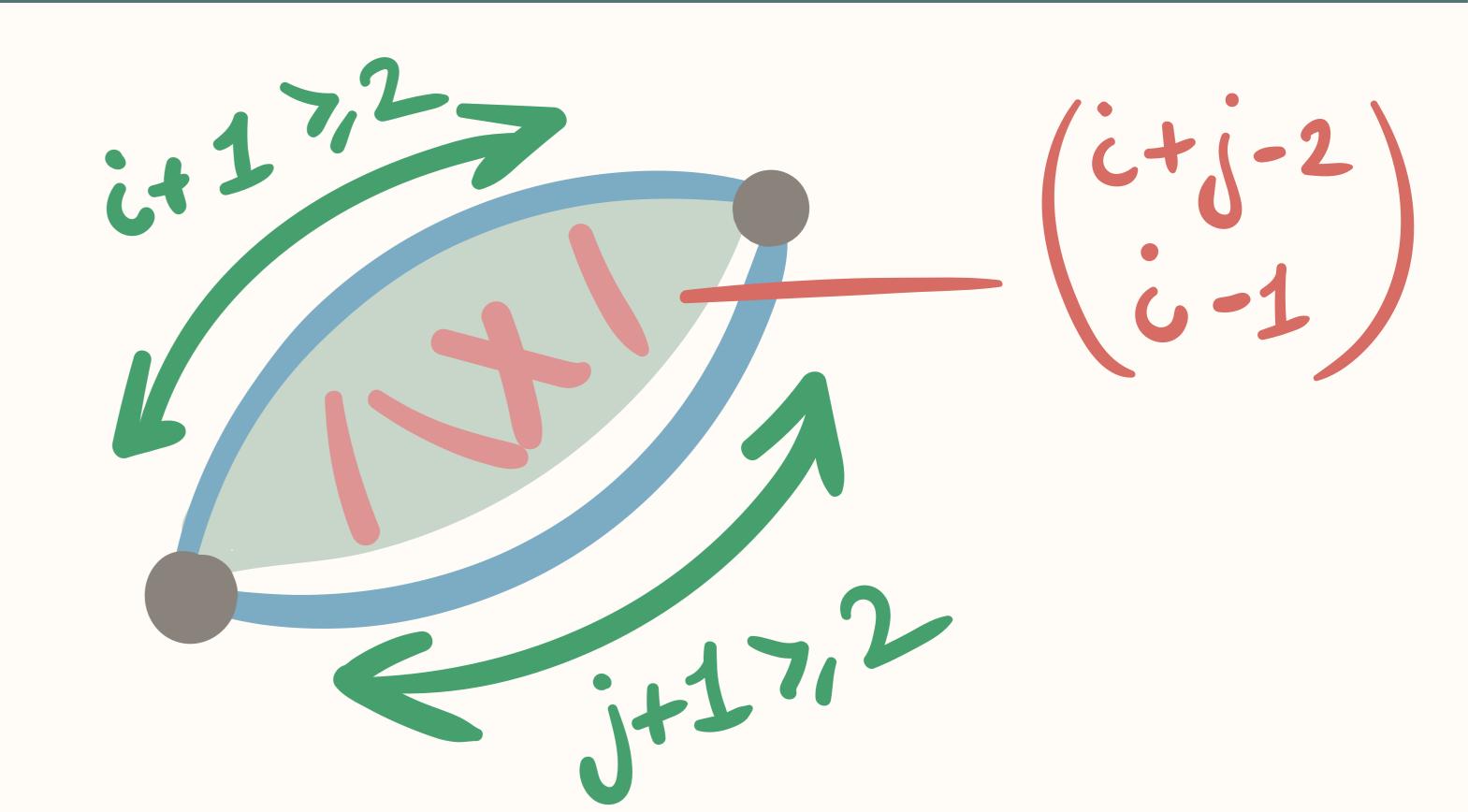


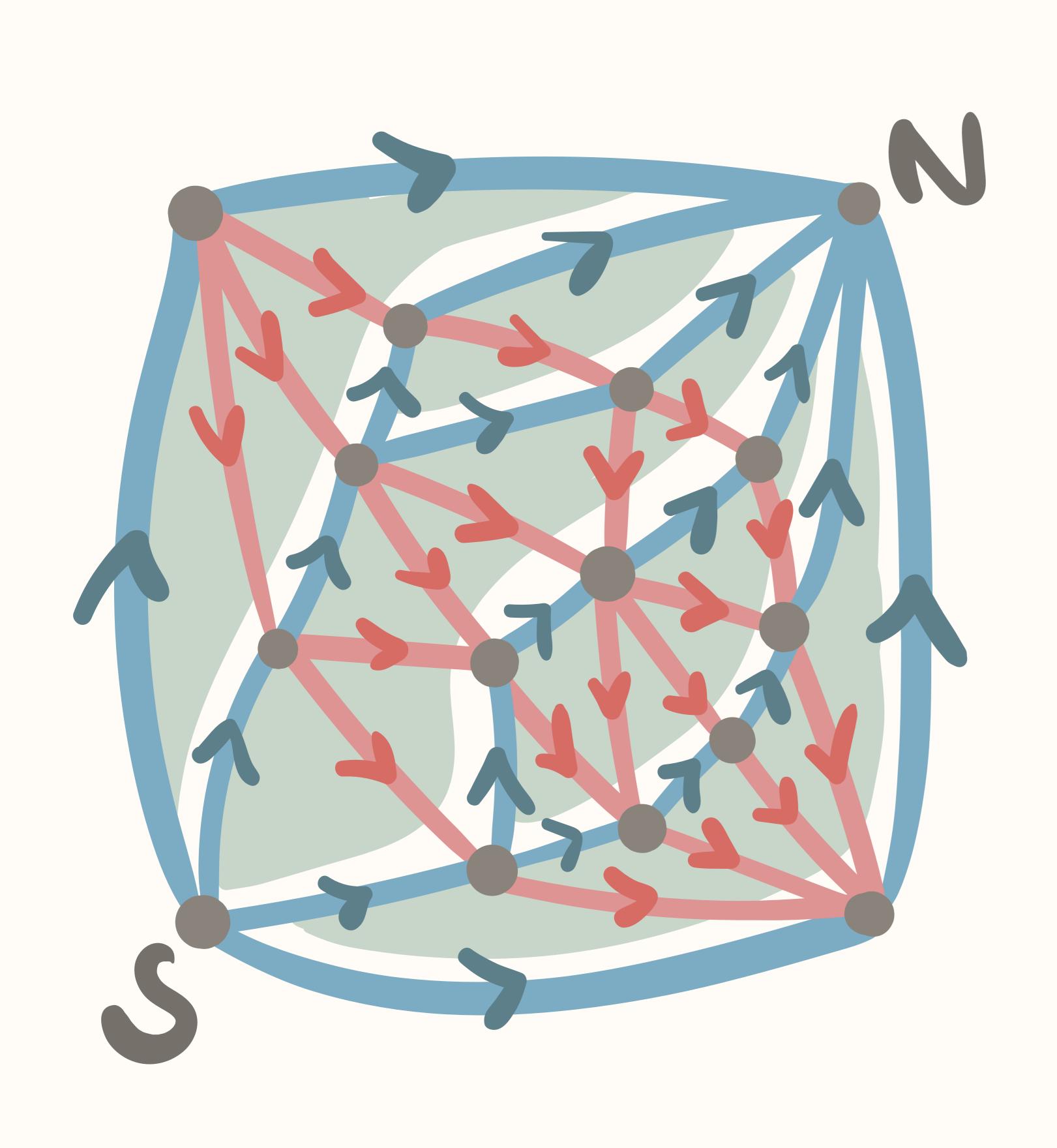


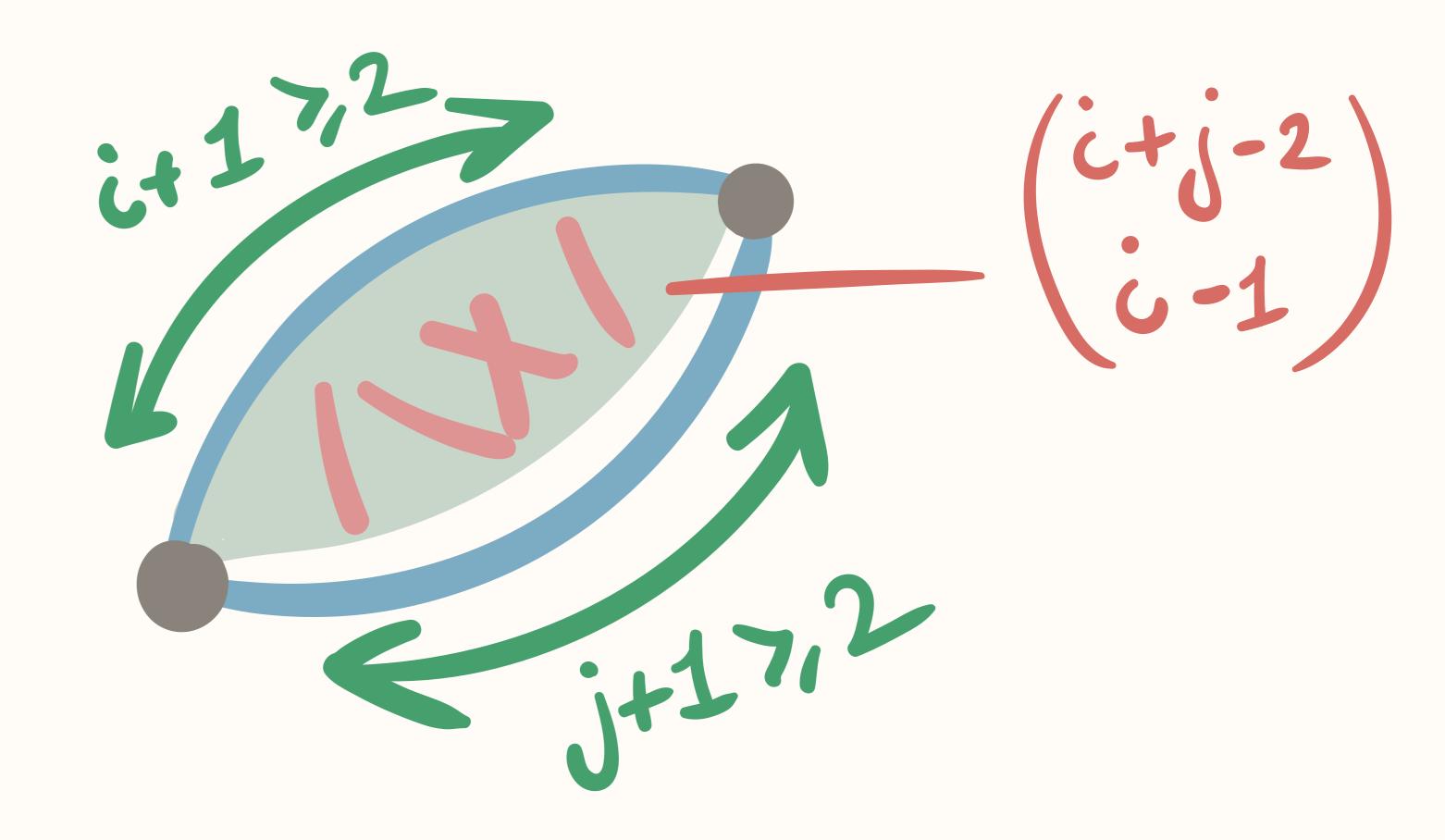


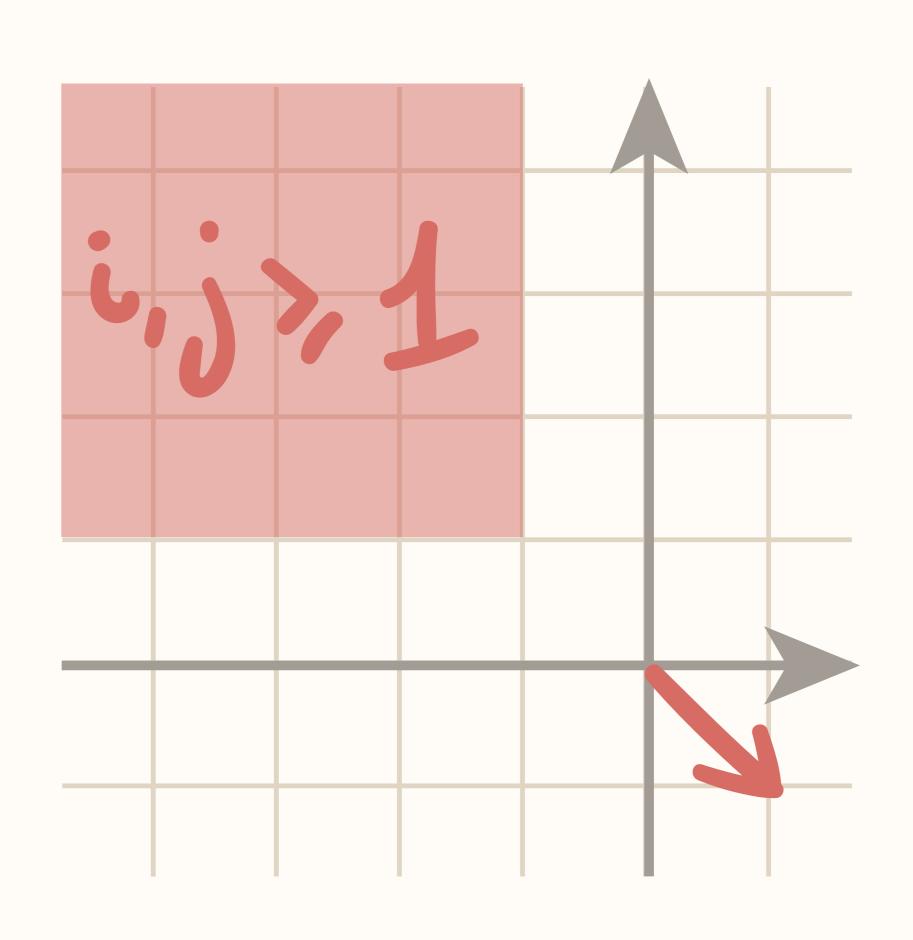


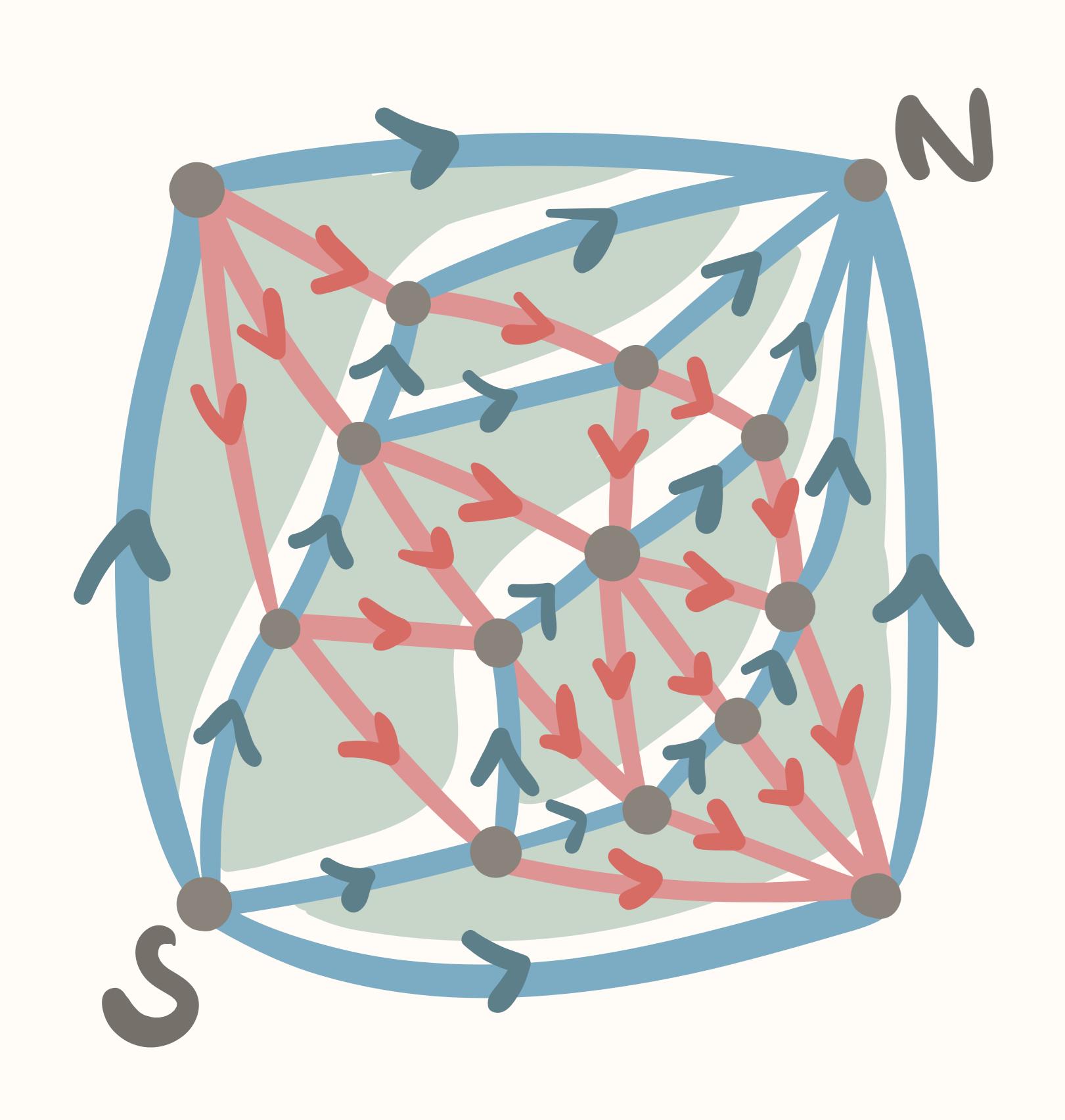


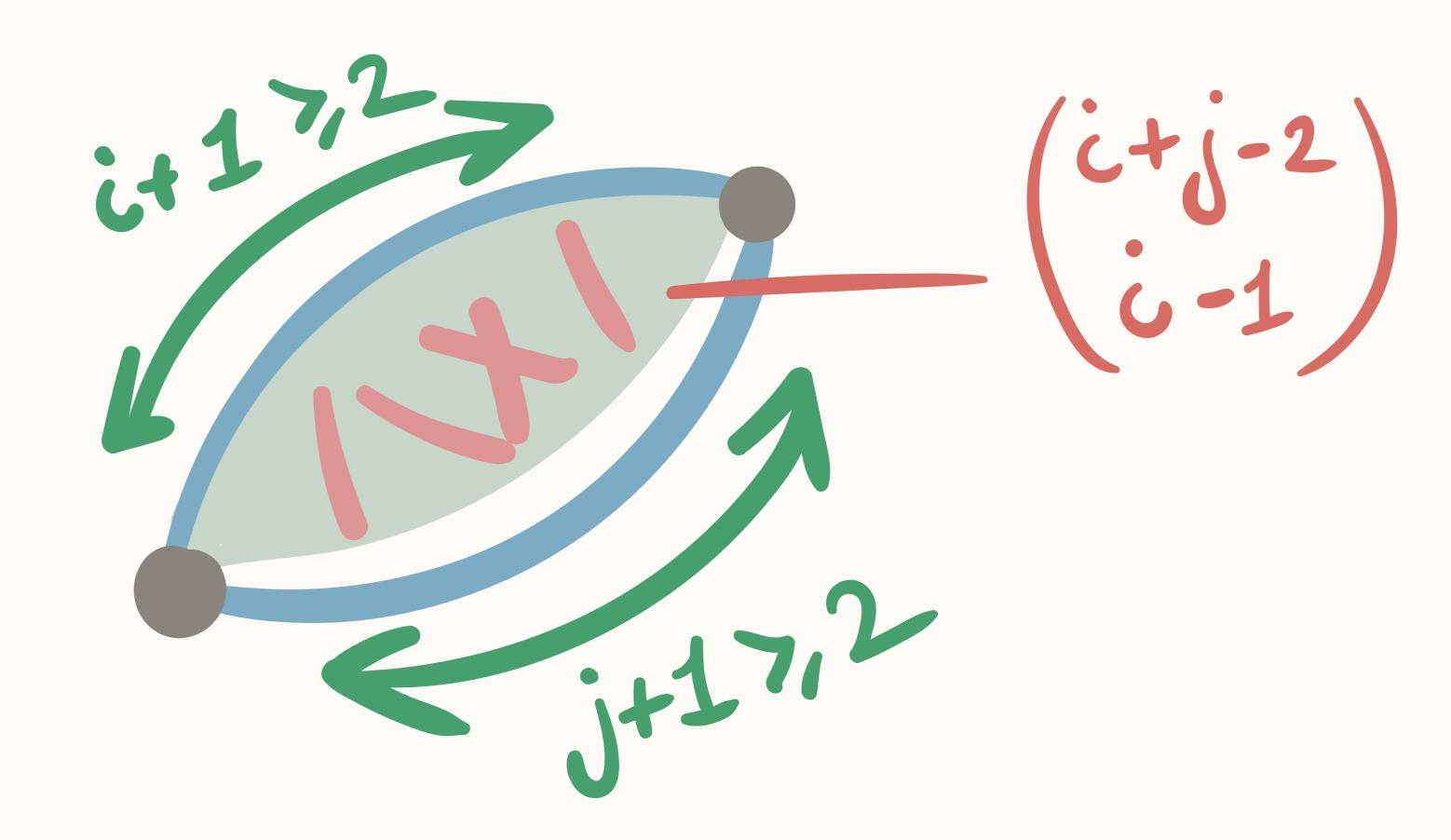


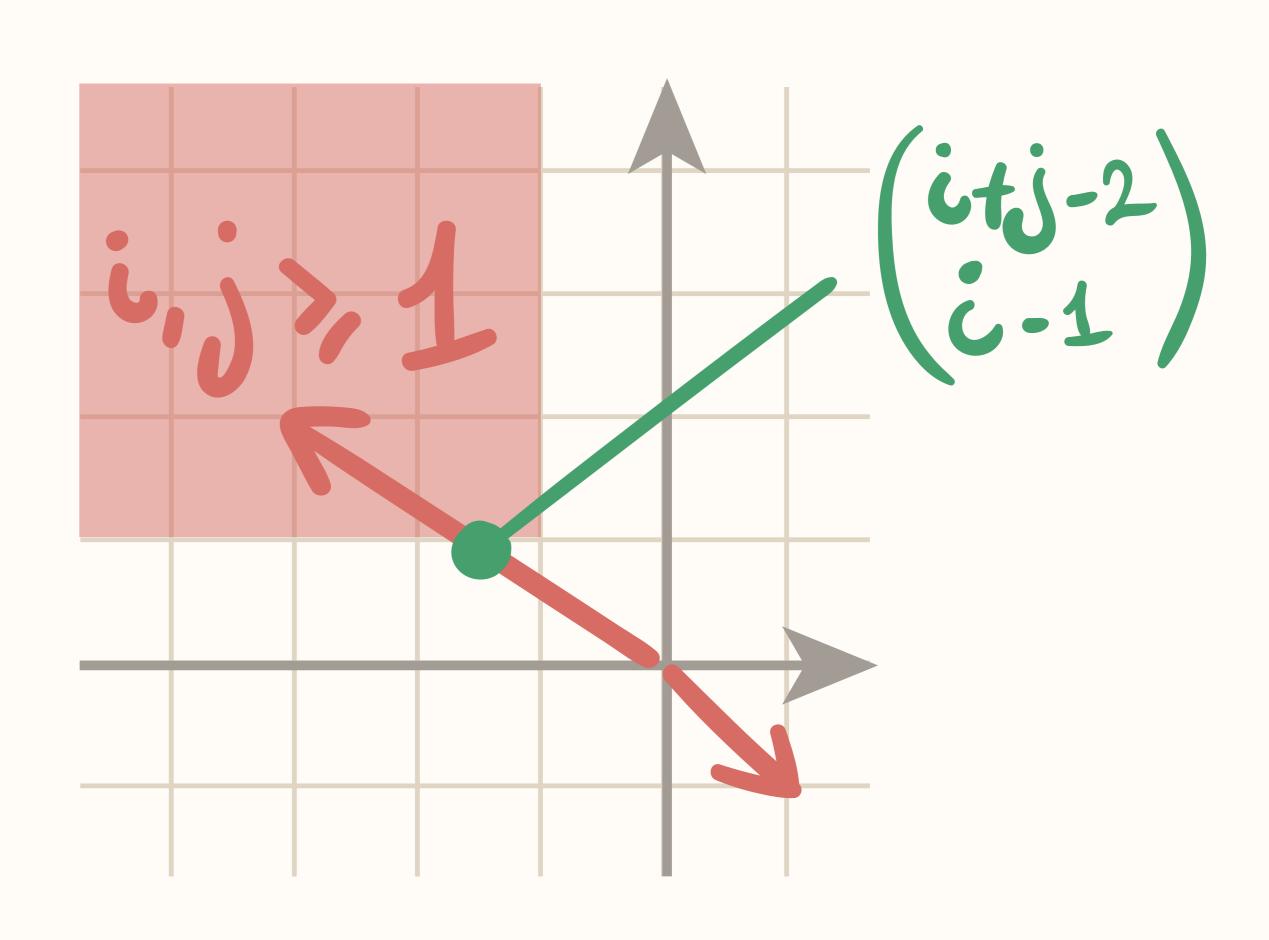




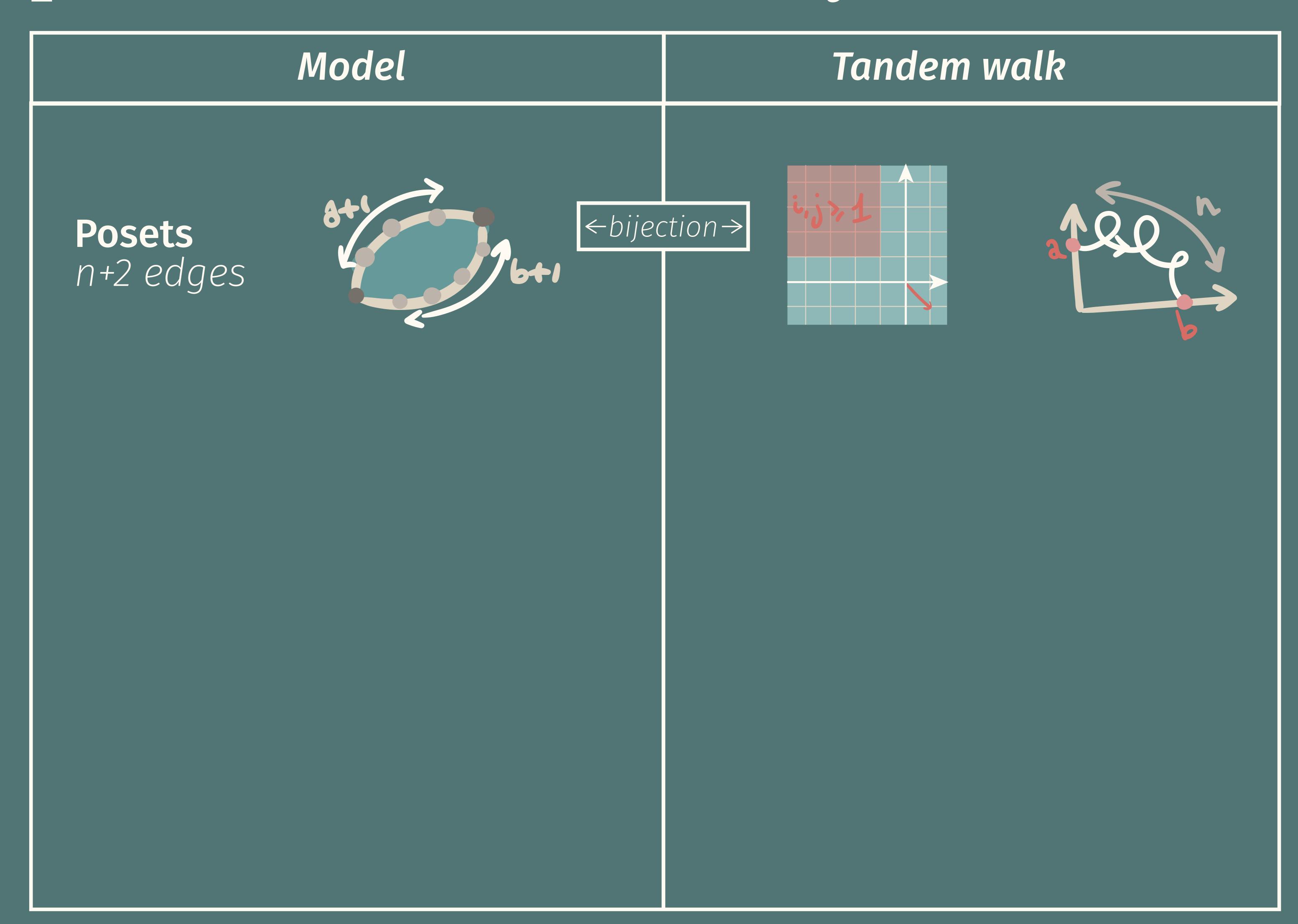


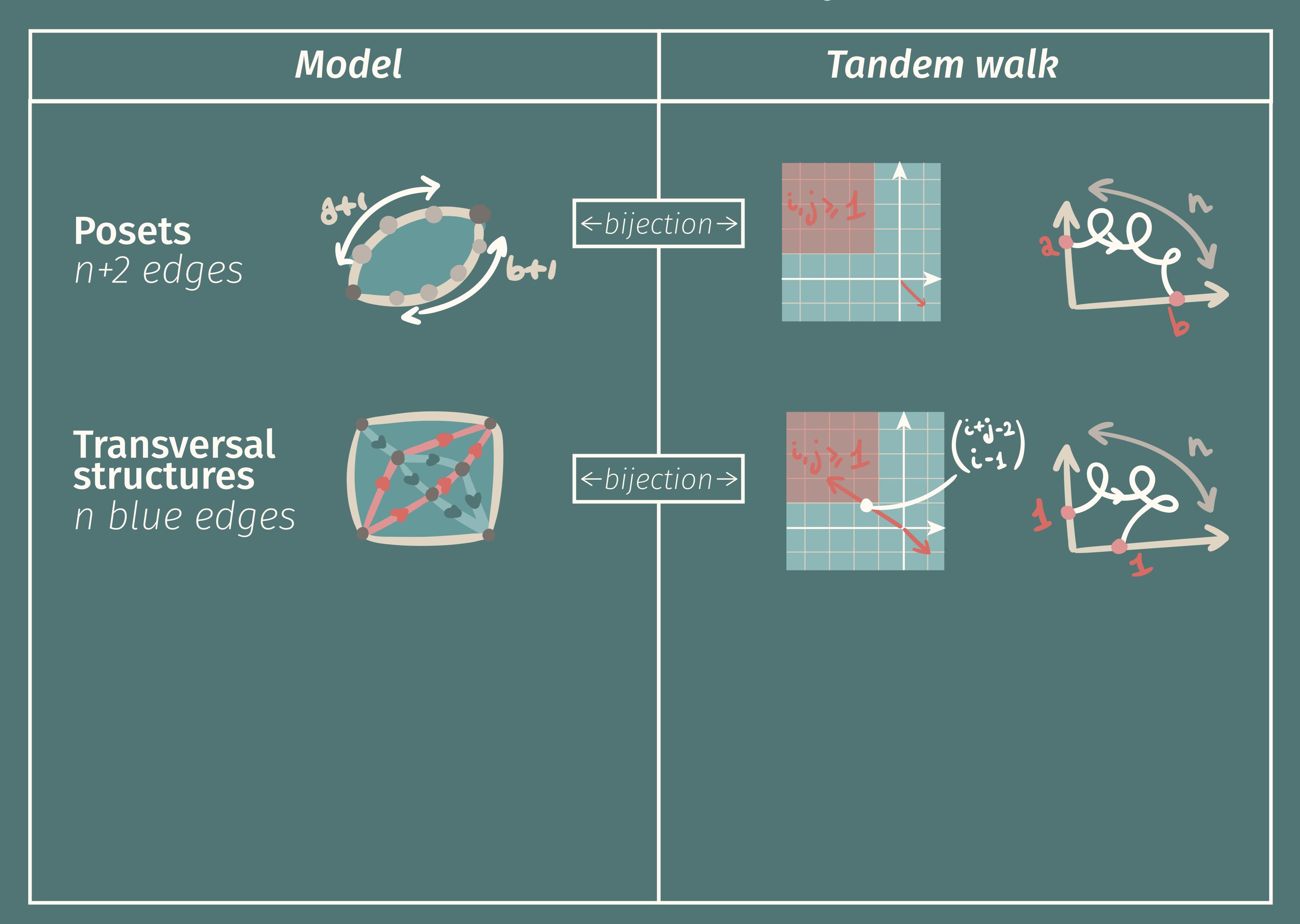


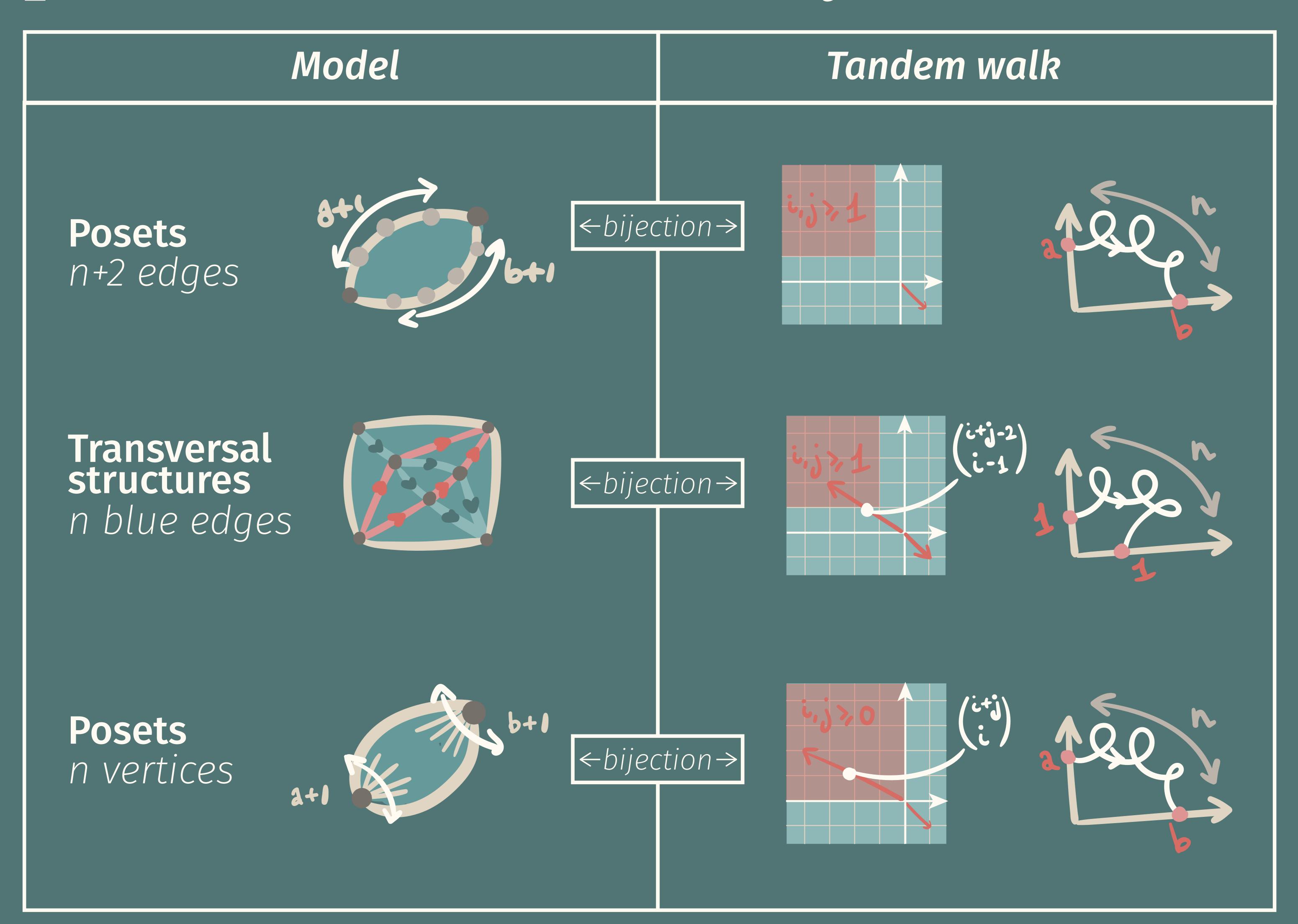




Model	Tandem walk







Summumy

Maps and decorated maps

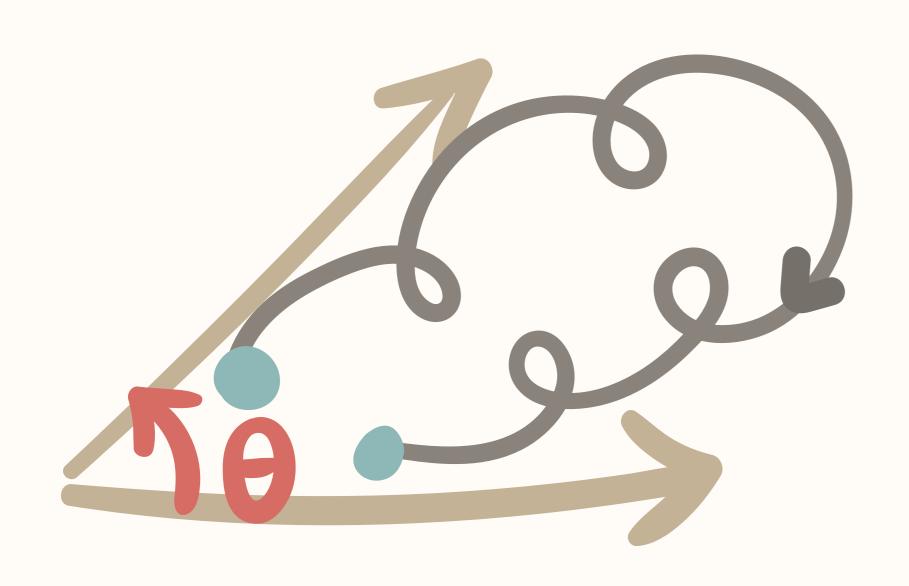
1. Bijection with quadrant tandem walks

- a. The KMSW bijection
- b. Plane bipolar posets
- c. Plane bipolar posets by vertices
- d. Transversal structures

2. Asymptotic enumeration

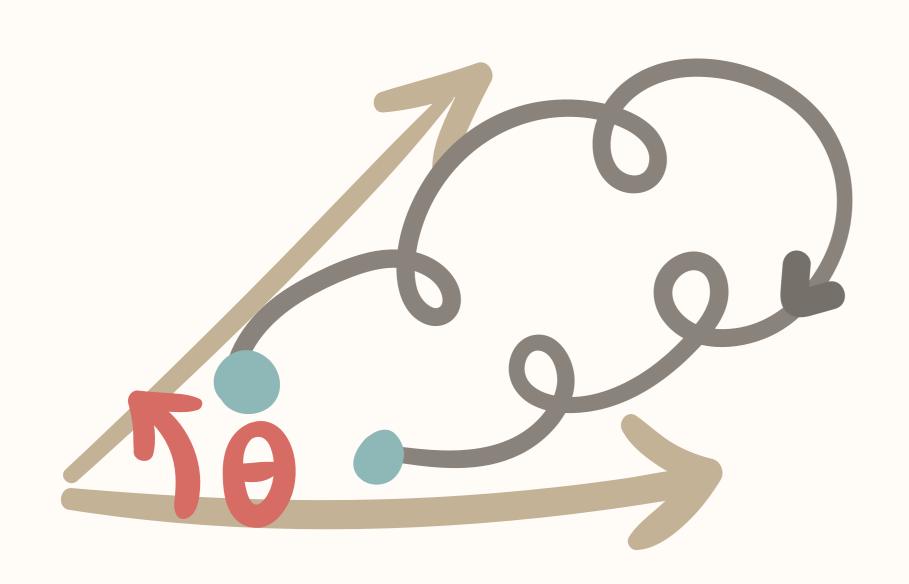
(Digression on plane permutations)

3. Generic transversal structures



- Random walks in cone, D. Denisov
 & V. Wachtel (2015)
- >>> Non-D-finite excursions in the quarter plane, D. Bostan, K. Raschel, B. Salvy (2012)

$$a_n \sim \varkappa \cdot \gamma^n n^{-1-\pi/ heta}$$

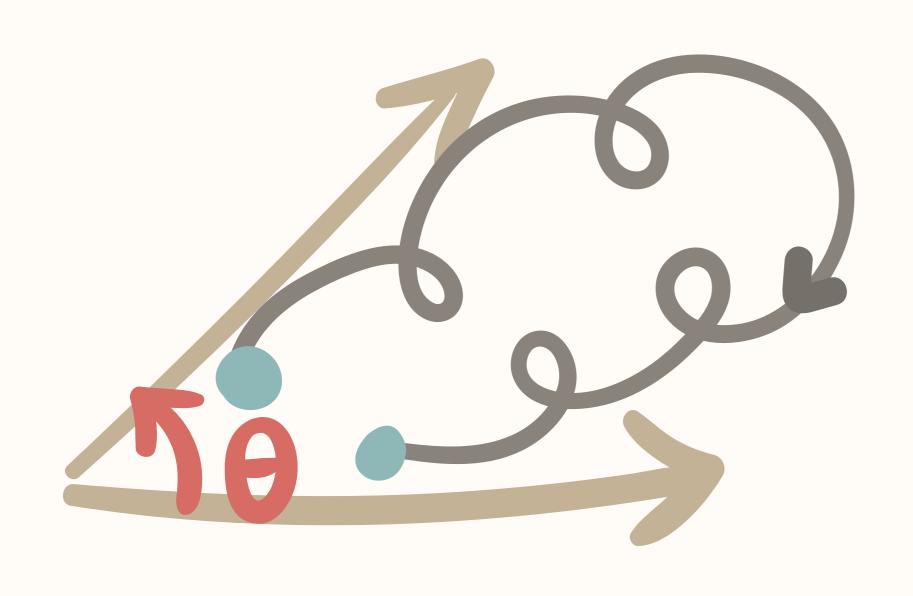


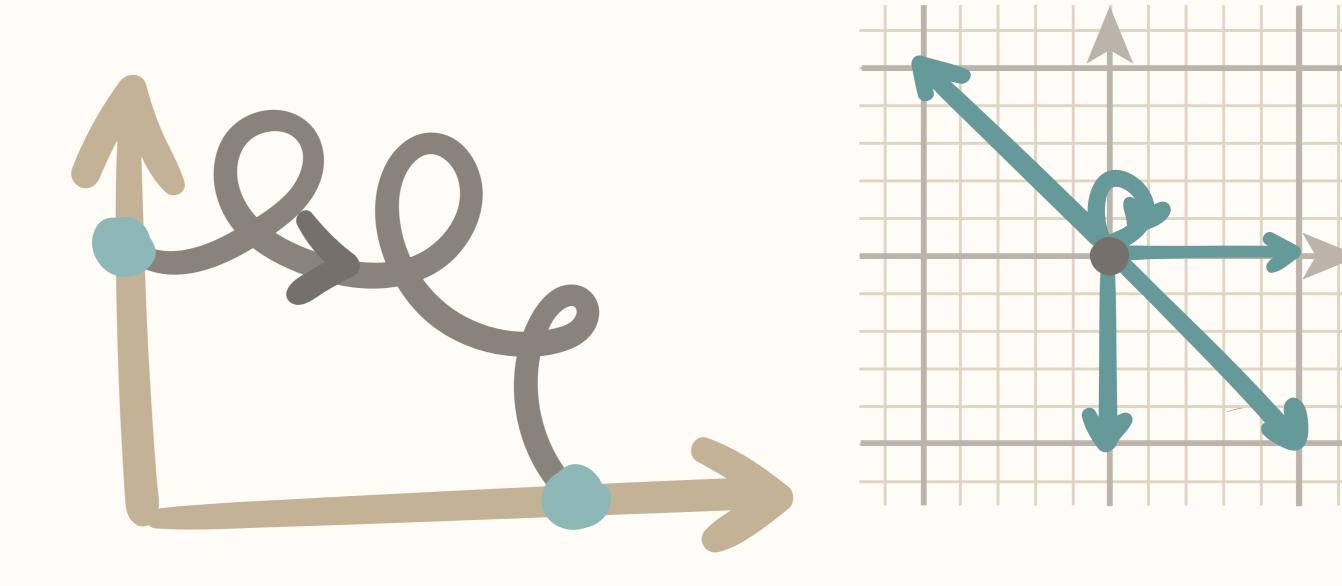
- Random walks in cone, D. Denisov
 & V. Wachtel (2015)
- >>> Non-D-finite excursions in the quarter plane, D. Bostan, K. Raschel, B. Salvy (2012)

$$a_n \sim \varkappa \cdot \gamma^n n^{-1-\pi/ heta}$$

If the drift is zero, i.e.:

$$\mathbf{E}[X] = \mathbf{E}[Y] = 0$$



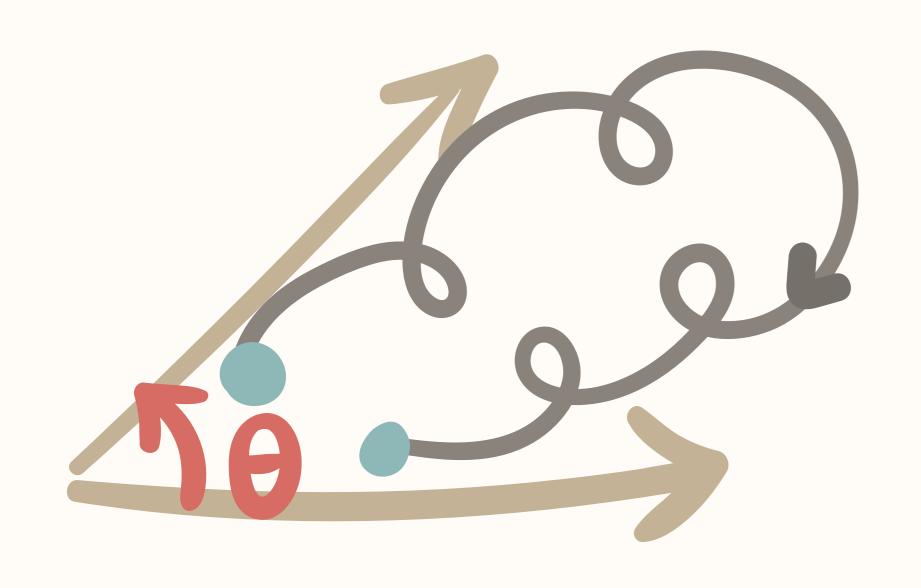


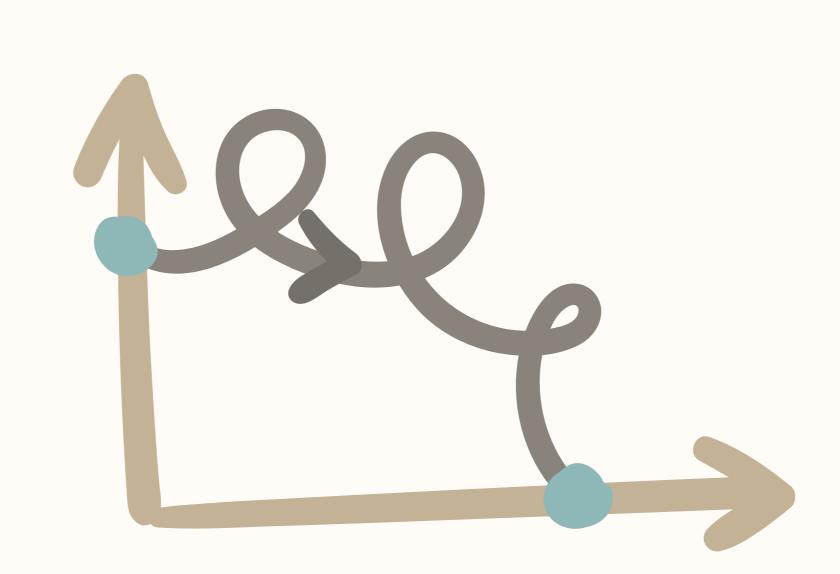
- Random walks in cone, D. Denisov
 & V. Wachtel (2015)
- >>> Non-D-finite excursions in the quarter plane, D. Bostan, K. Raschel, B. Salvy (2012)

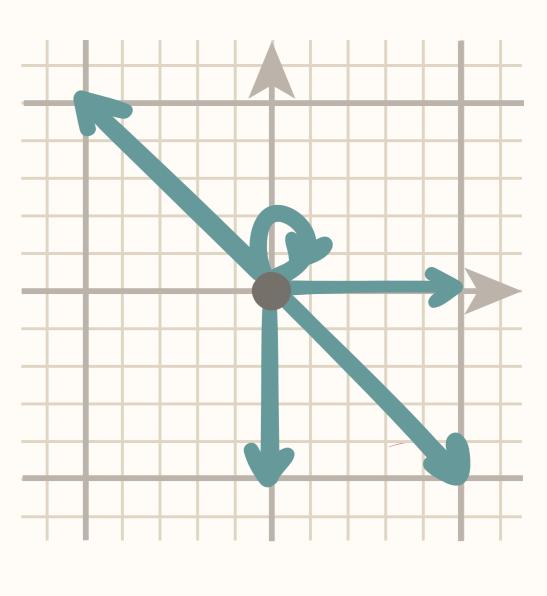
$$a_n \sim \varkappa \cdot \gamma^n n^{-1-\pi/ heta}$$

If the drift is zero, i.e.:

$$\mathbf{E}[X] = \mathbf{E}[Y] = 0$$





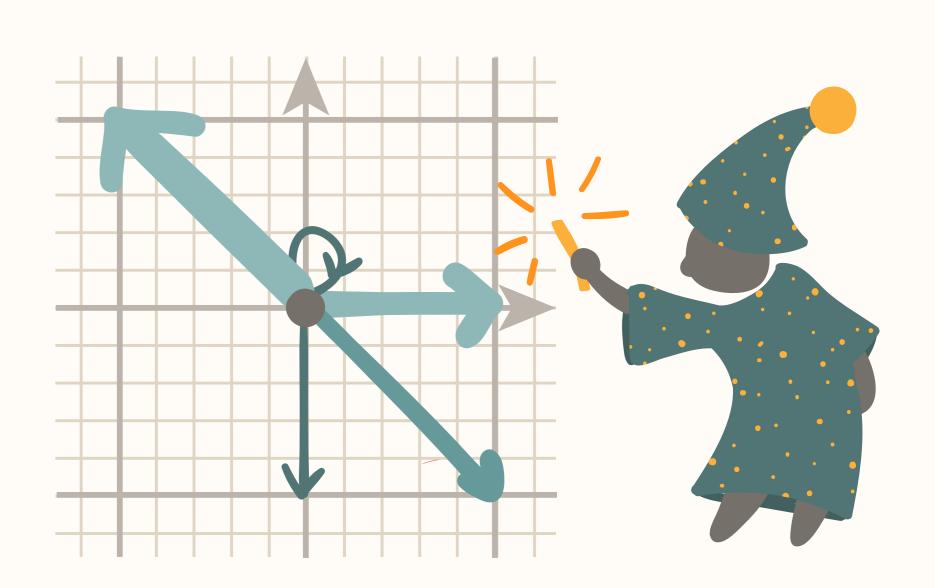


- Random walks in cone, D. Denisov
 & V. Wachtel (2015)
- Non-D-finite excursions in the quarter plane, D. Bostan, K. Raschel, B. Salvy (2012)

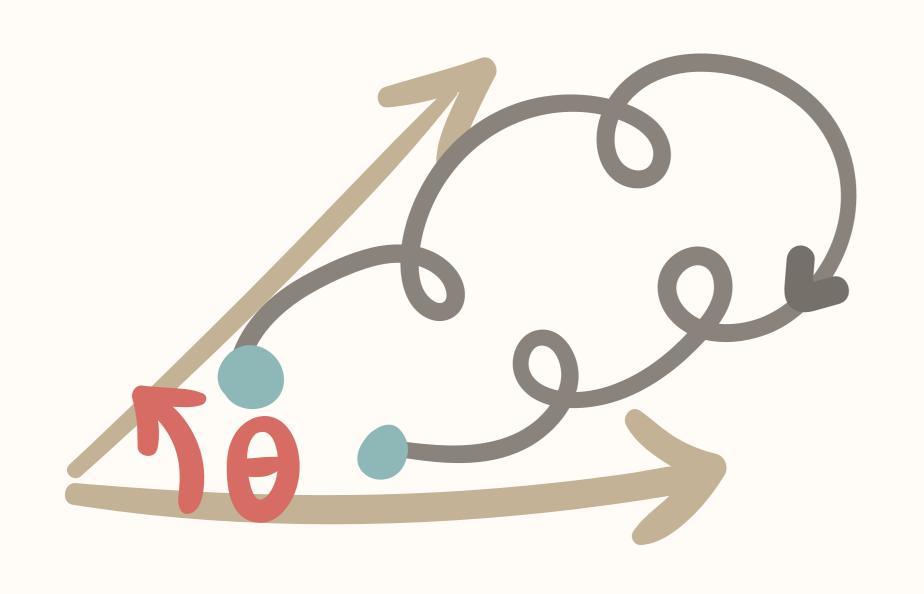
$$a_n \sim \varkappa \cdot \gamma^n n^{-1-\pi/ heta}$$

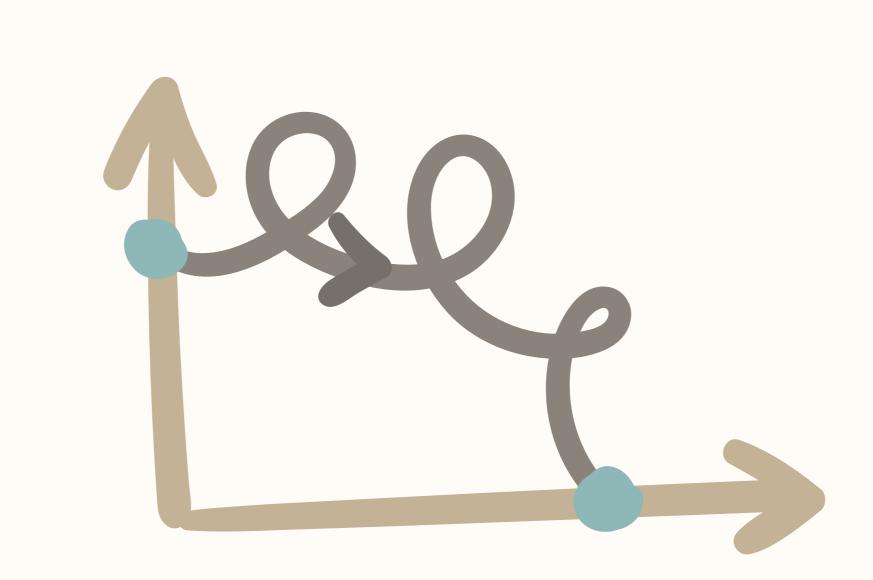
If the drift is zero, i.e.:

$$\mathbf{E}[X] = \mathbf{E}[Y] = 0$$



Weighted steps



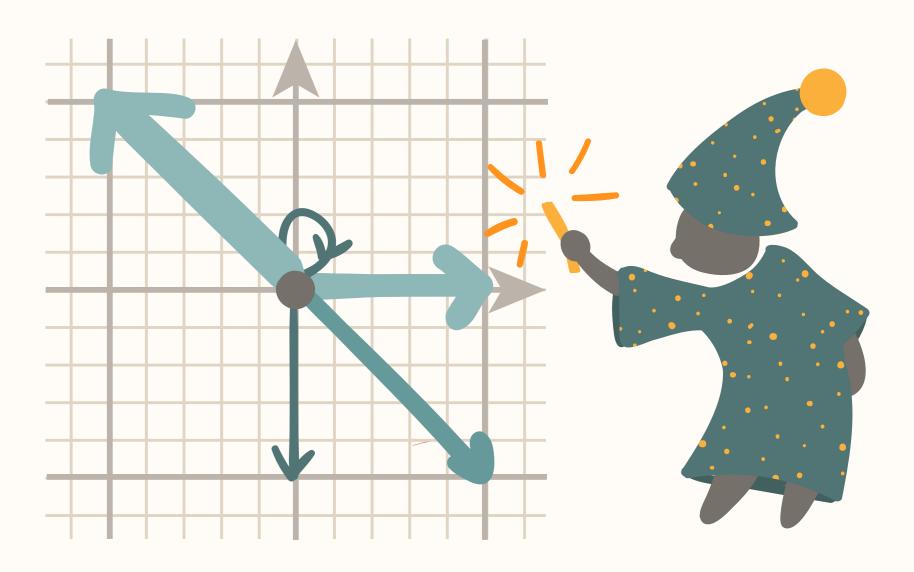




- Random walks in cone, D. Denisov
 & V. Wachtel (2015)
- Non-D-finite excursions in the quarter plane, D. Bostan, K. Raschel, B. Salvy (2012)

$$a_n \sim \varkappa \cdot \gamma^n n^{-1-\pi/ heta}$$

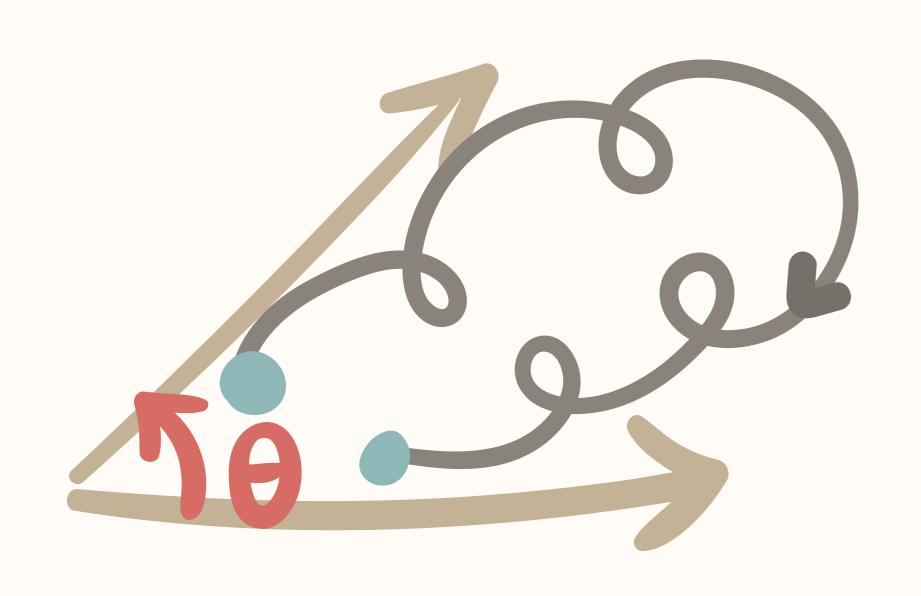
Shear transformation

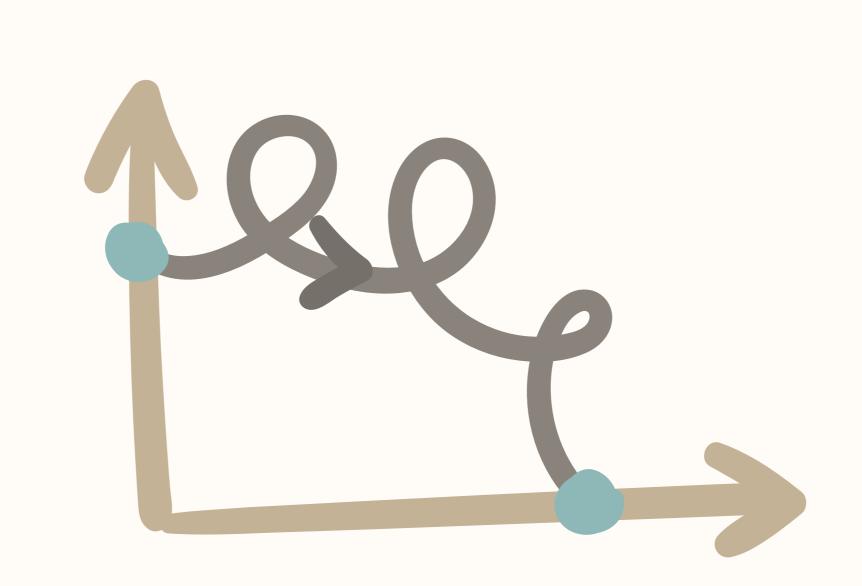


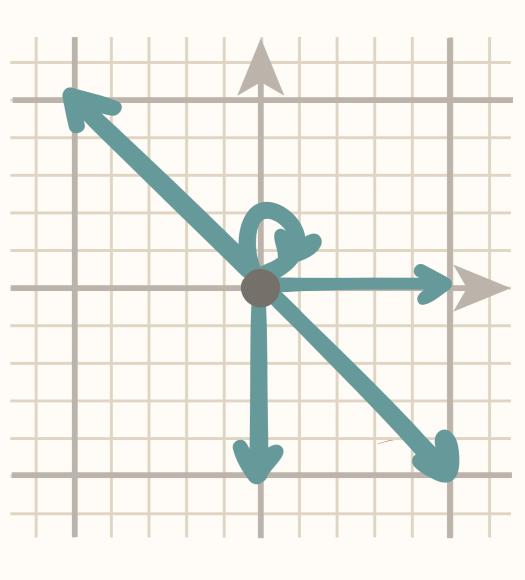
Weighted steps

If the drift is zero, i.e.:

$$\mathbf{E}[X] = \mathbf{E}[Y] = 0$$

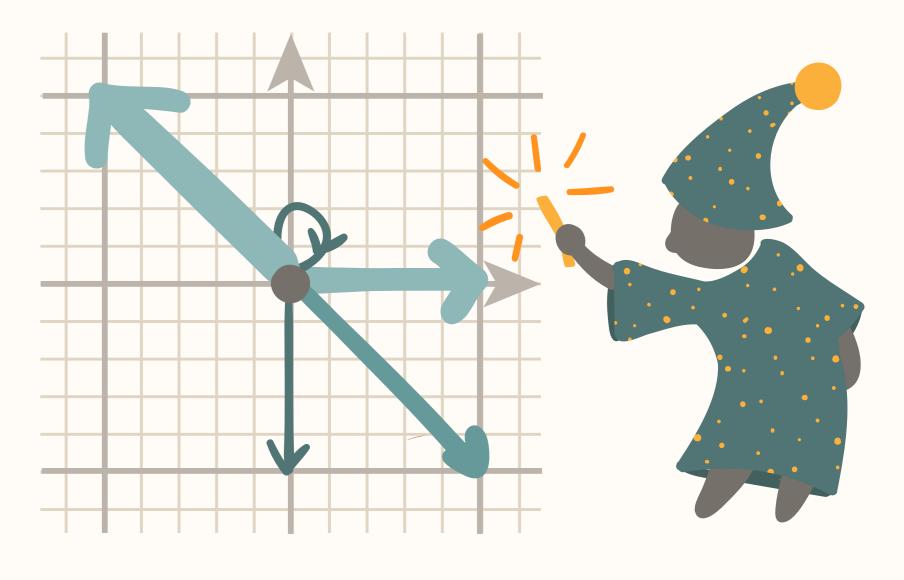






- Random walks in cone, D. Denisov
 & V. Wachtel (2015)
- Non-D-finite excursions in the quarter plane, D. Bostan, K. Raschel, B. Salvy (2012)

$$a_n \sim \varkappa \cdot \gamma^n n^{-1-\pi/ heta}$$



Weighted steps

If the drift is zero, i.e.:

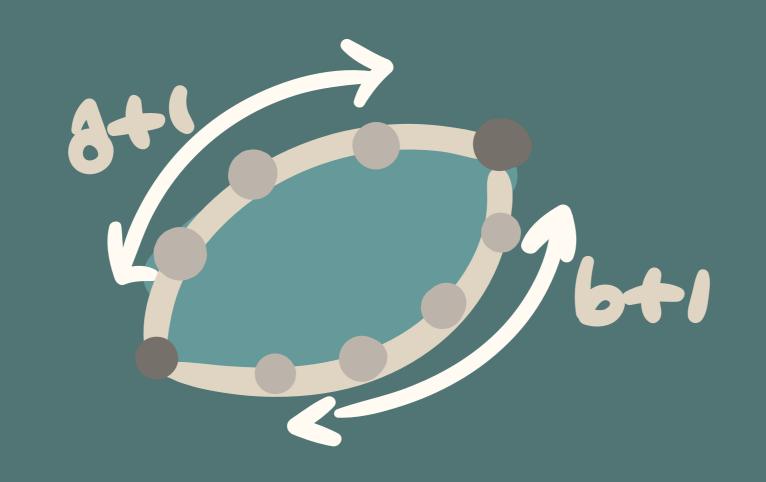
$$\mathbf{E}[X] = \mathbf{E}[Y] = 0$$

Asymptotics Model $e_n \sim \varkappa \, \gamma^n n^{-lpha}$ γ and ξ are algebraic $\gamma \approx 4.80 \ldots \, \alpha \approx 5.14 \ldots$ $lpha = -1 - rac{\pi}{rccos(\xi)}$ Posets n+2 edges

Model

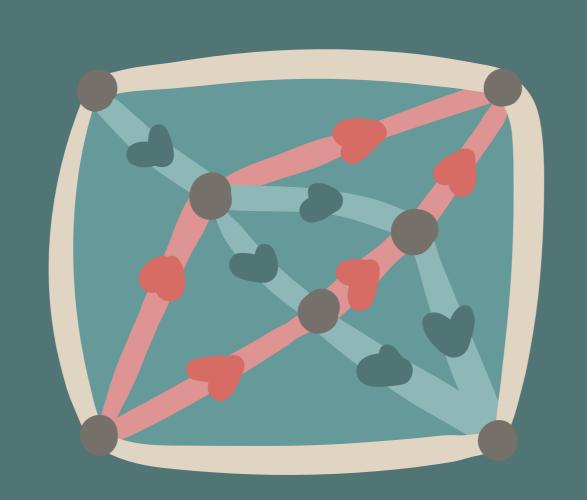
Asymptotics

Posets n+2 edges



 $e_n \sim \varkappa \, \gamma^n n^{-lpha}$ γ and ξ are algebraic $\gamma \approx 4.80 \ldots \, \alpha \approx 5.14 \ldots$ $lpha = -1 - rac{\pi}{rccos(\xi)}$

Transversal structures n vertices

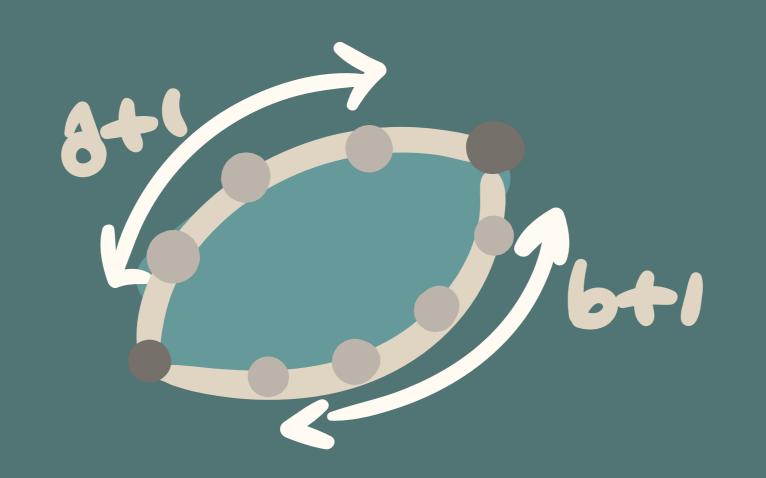


->> Counting rectangular drawings, Y. Inoue, T. Takahashi & R. Fujimaki (2009)

Model

Asymptotics

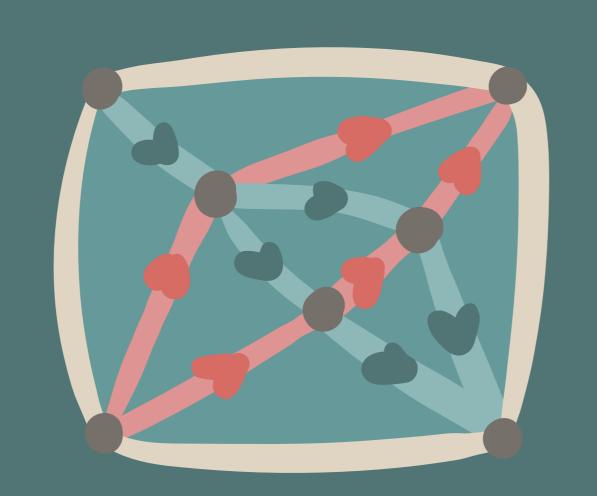
Posets n+2 edges



 $lpha = -1 - rac{\pi}{rccos(\xi)}$

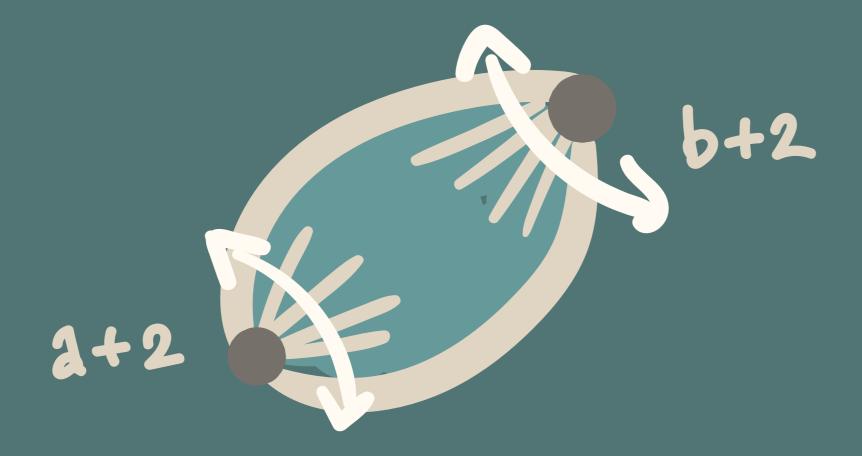
 $e_n \sim \varkappa \, \gamma^n n^{-lpha}$ γ and ξ are algebraic $\gamma \approx 4.80 \ldots \, \alpha \approx 5.14 \ldots$

Transversal structures n vertices



->> Counting rectangular drawings, Y. Inoue, T. Takahashi & R. Fujimaki (2009)

Posets n vertices



$$b_n \sim arkappa \left(rac{11+\sqrt{5}}{2}
ight)^n n^{-6}$$

Asymptotic counting ROSETS REP VERTEX Pose n ver

Asymptotic counting PLANE PERMUTATIONS Mad ROSETS REP VERTEX >>> Semi-Baxter and strong-Baxter: two relatives of Baxter Sequences, M. Bouvel, V. Guerrini, A. Rechnitzer $os(\xi)$ 8 S. Rinaldi (2018) Pose nver

Asymptotic counting PLANE PERMUTATIONS Mad ROSETS REP VERTEX >>> Semi-Baxter and strong-Baxter: two relatives of Baxter Sequences, M. Bouvel, V. Guerrini, A. Rechnitzer $os(\xi)$ 8 S. Rinaldi (2018) 1,1,2,6,23,104,530,2958, Pose

Asymptotic counting PLANE PERMUTATIONS Mad ROSETS REP VERTEX >>> Semi-Baxter and strong-Baxter: two relatives of Baxter Sequences, M. Bouvel, V. Guerrini, A. Rechnitzer $os(\xi)$ 8 S. Rinaldi (2018) 1,1,2,6,23,104,530,2358, 11134, 112657, 150726, ... >>> http://oeis.org/A117106 1,1,2,6,23,104,530,2958, Pose

Asymptotic counting PLANE PERMUTATIONS Mad ROSETS REP VERTEX >>> Semi-Baxter and strong-Baxter: two relatives of Baxter Sequences, M. Bouvel, V. Guerrini, A. Rechnitzer $os(\xi)$ 8 S. Rinaldi (2018) 1,1,2,6,23,104,530,2558, 11734, 112657, 750726, ... >>> http://oeis.org/A117106 1,1,2,6,23,104,530,2958, posettices permutations per vertices

Summumy

Maps and decorated maps

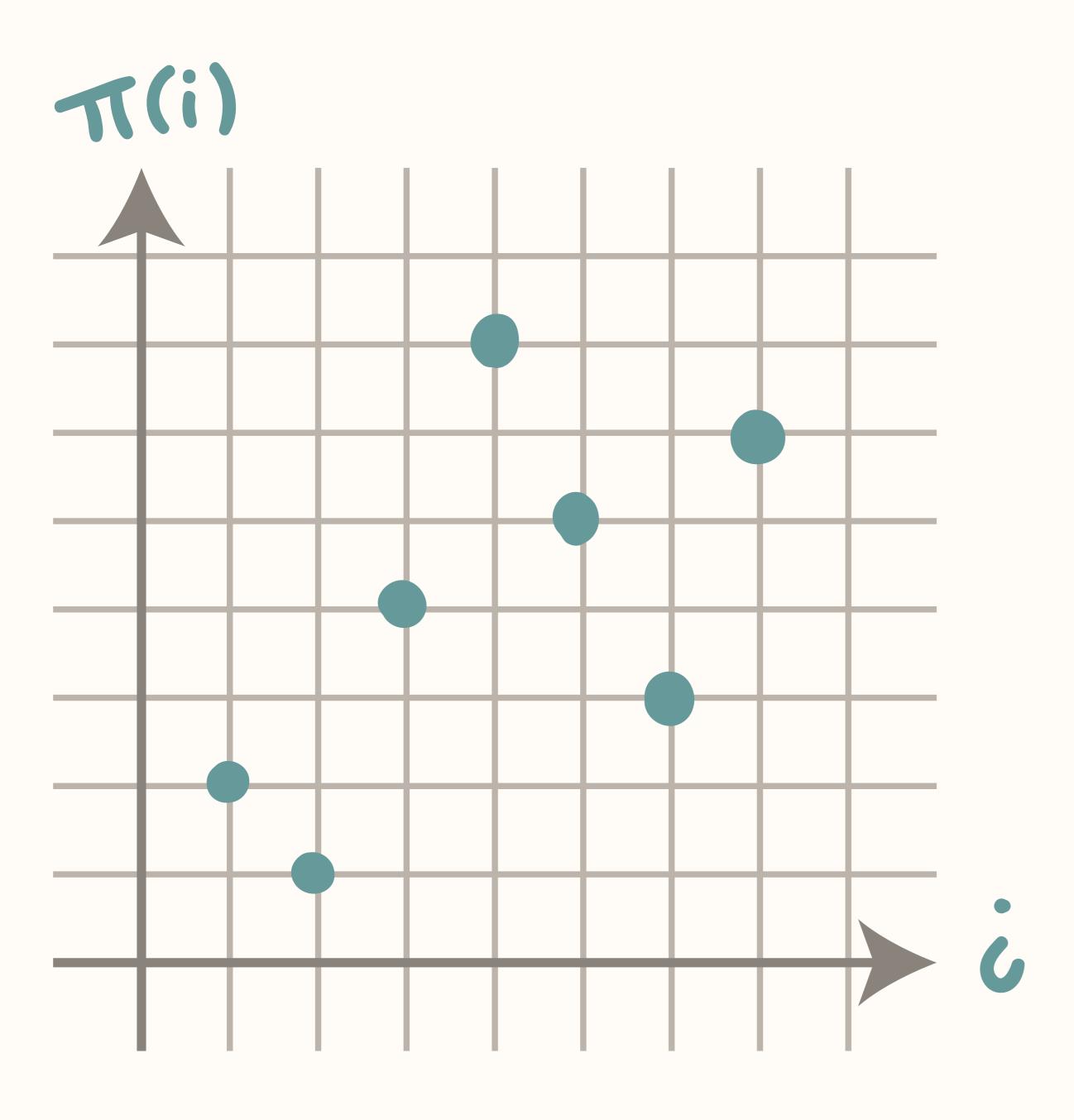
1. Bijection with quadrant tandem walks

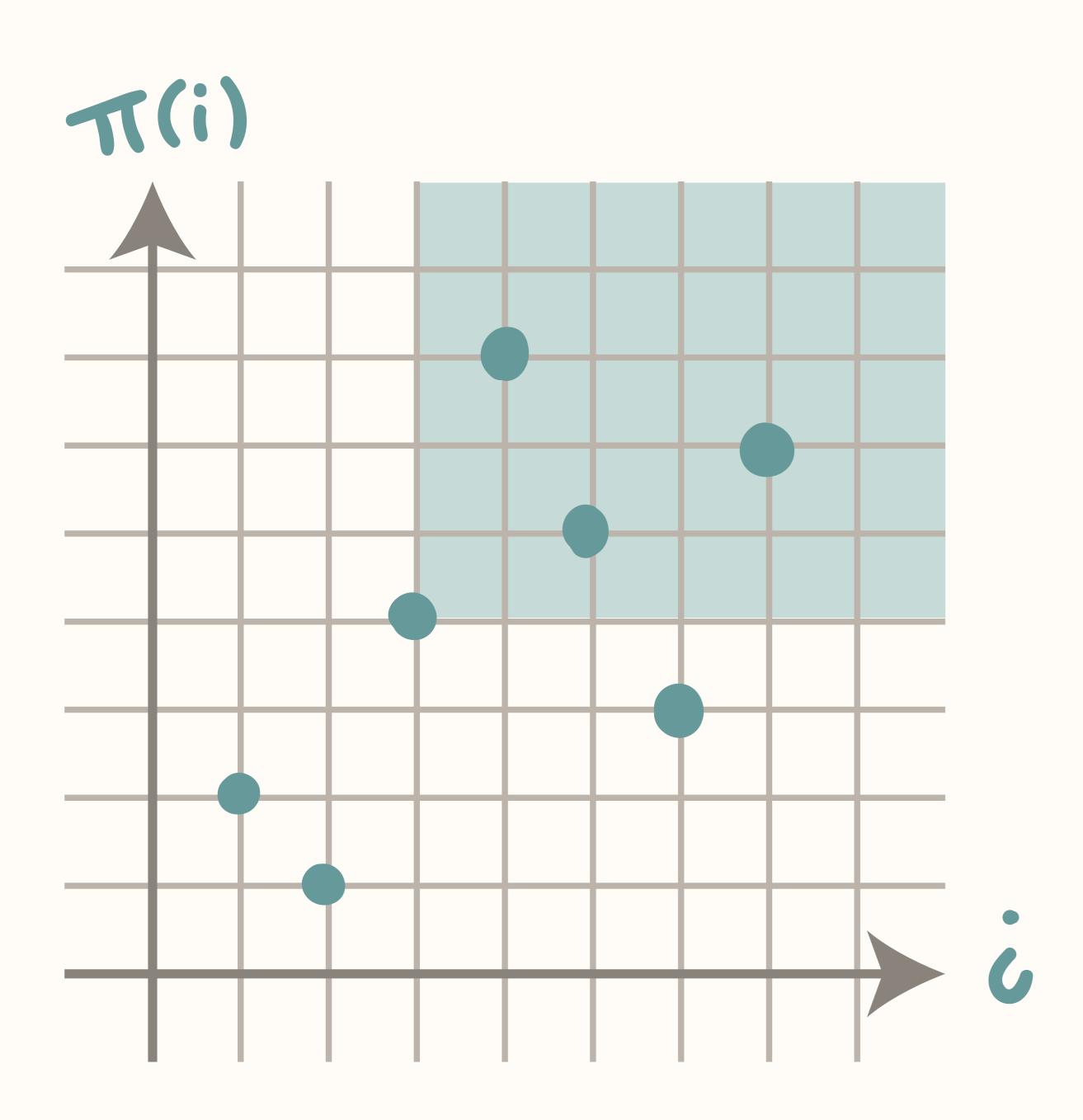
- a. The KMSW bijection
- b. Plane bipolar posets
- c. Plane bipolar posets by vertices
- d. Transversal structures

2. Asymptotic enumeration

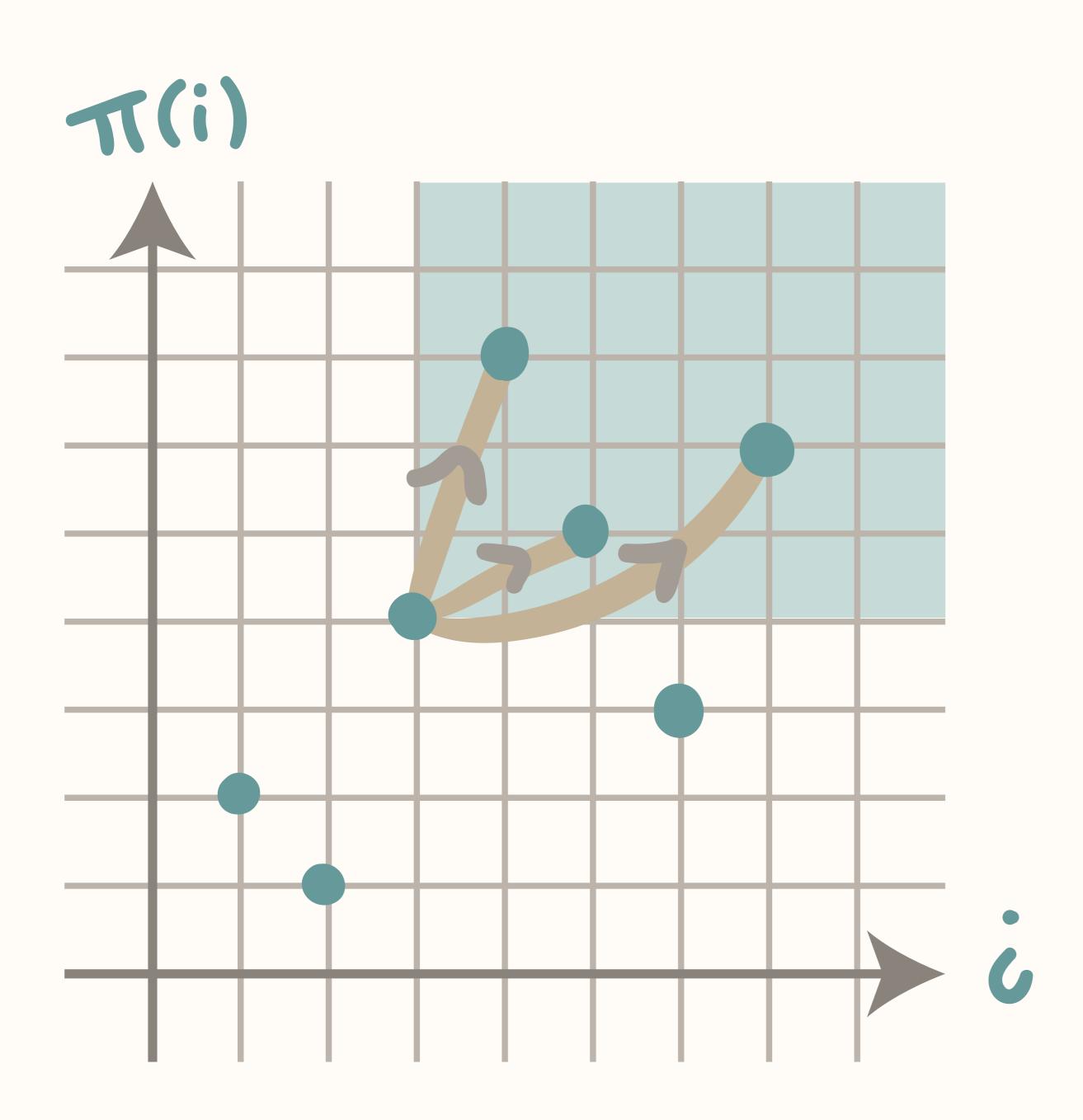
(Digression on plane permutations)

3. Generic transversal structures

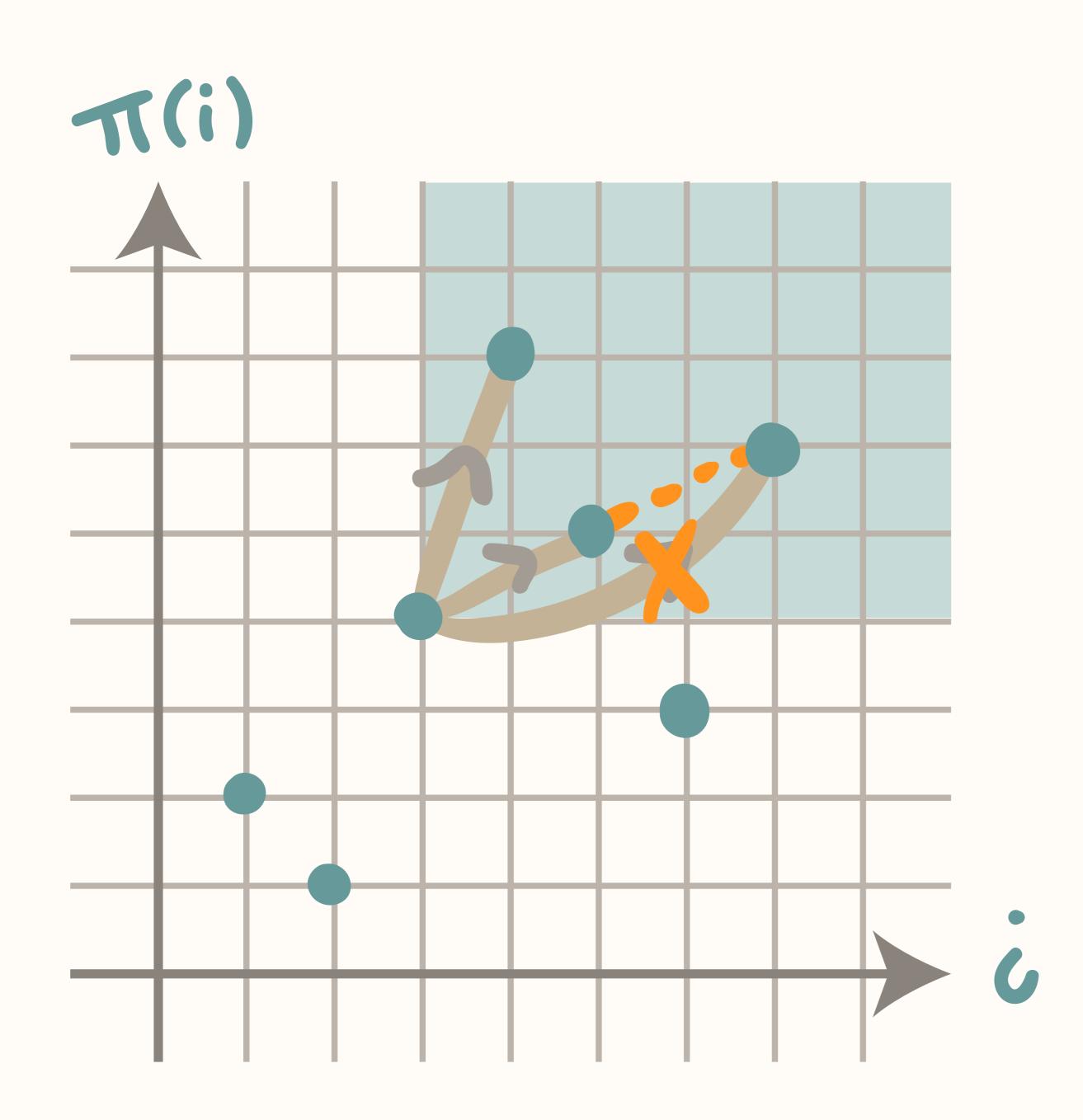




Dominance relation

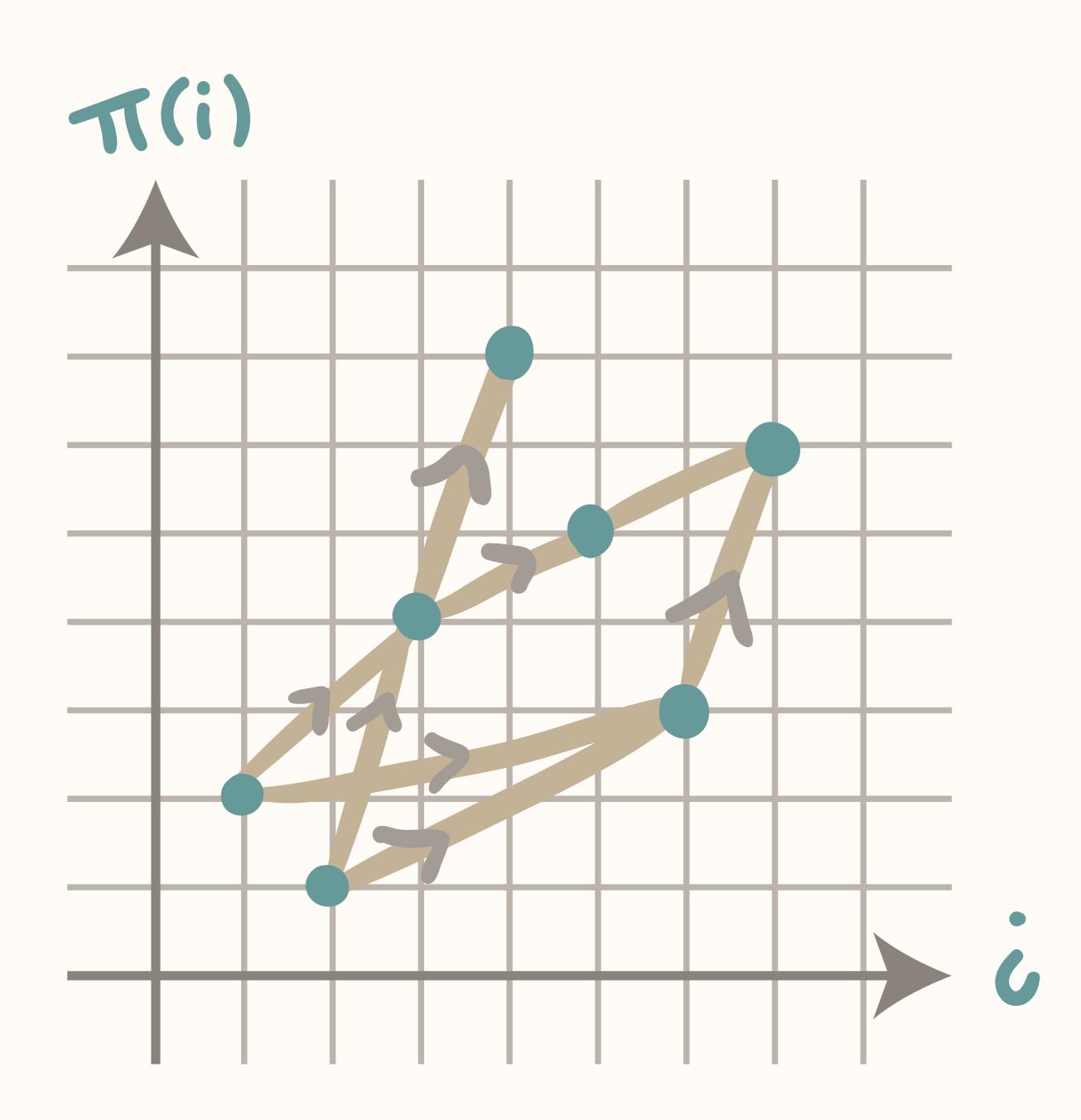


Dominance relation



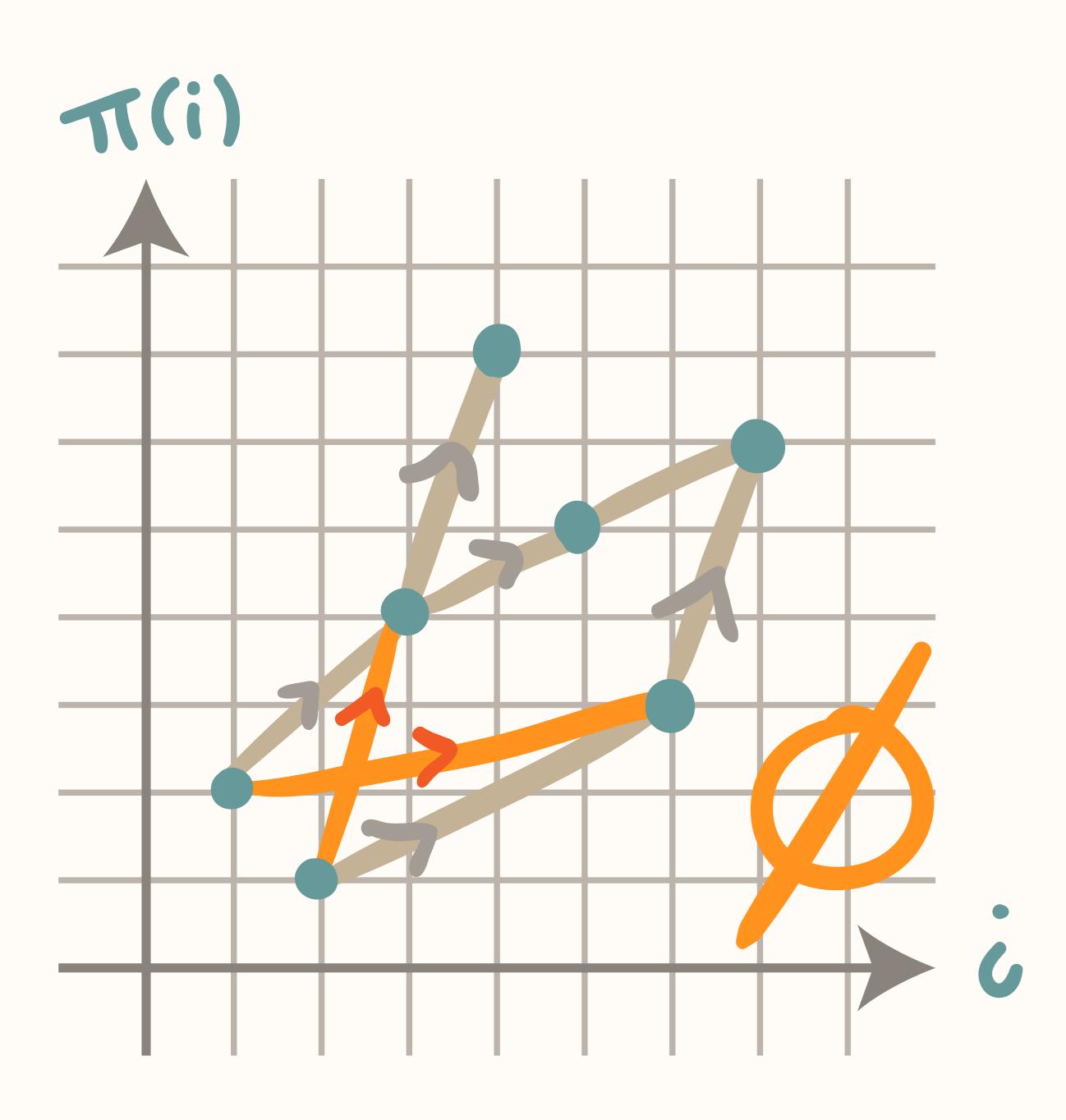
Dominance diagram

Dominance relationwith no transitive edges



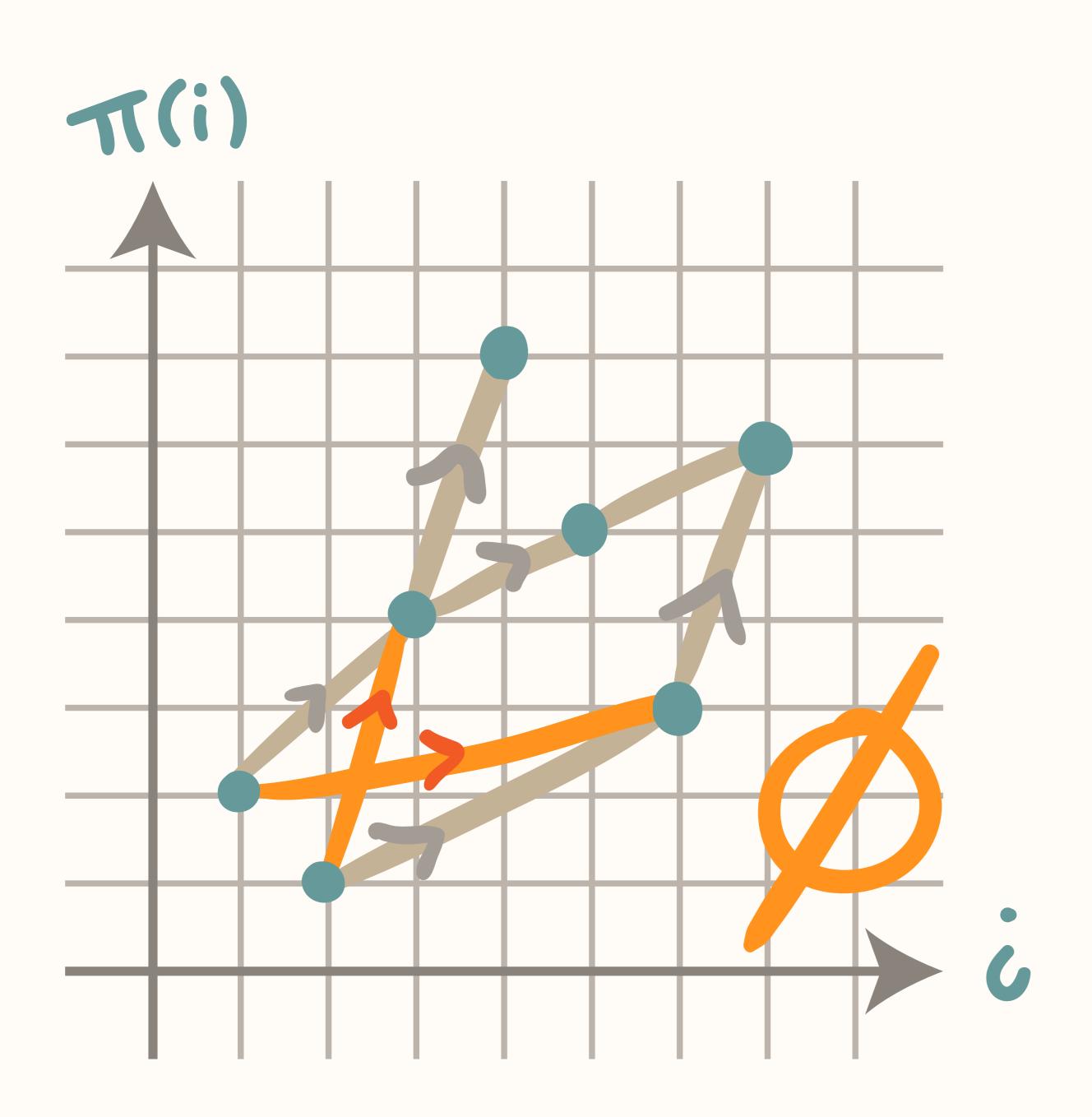
Dominance diagram

Dominance relationwith no transitive edges



Plane permutation = No edge crossing in the

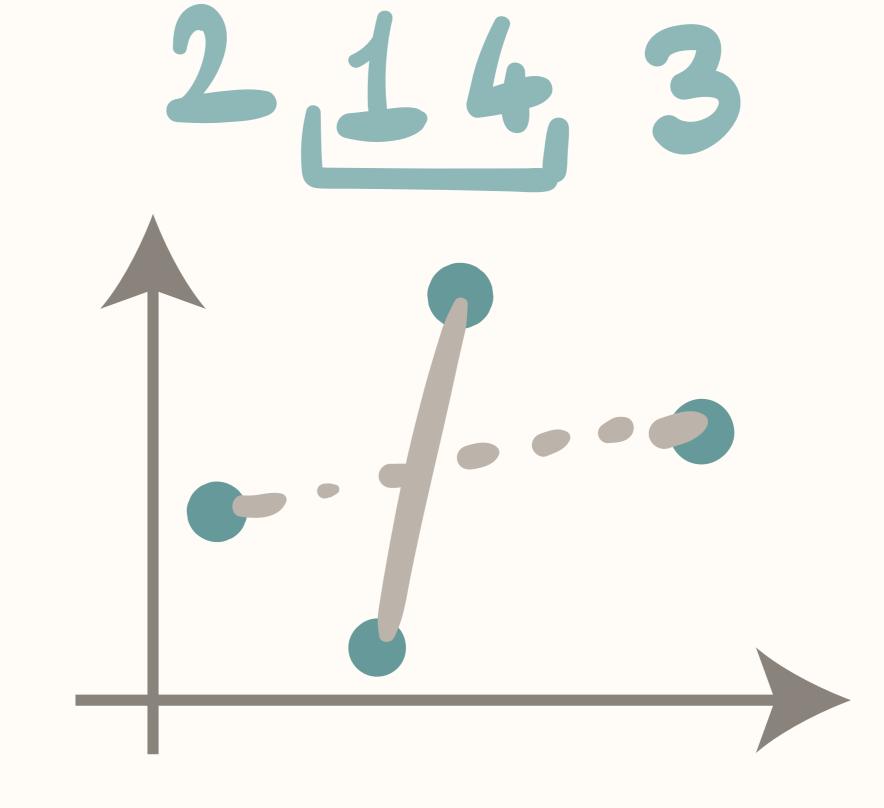
dominance diagram

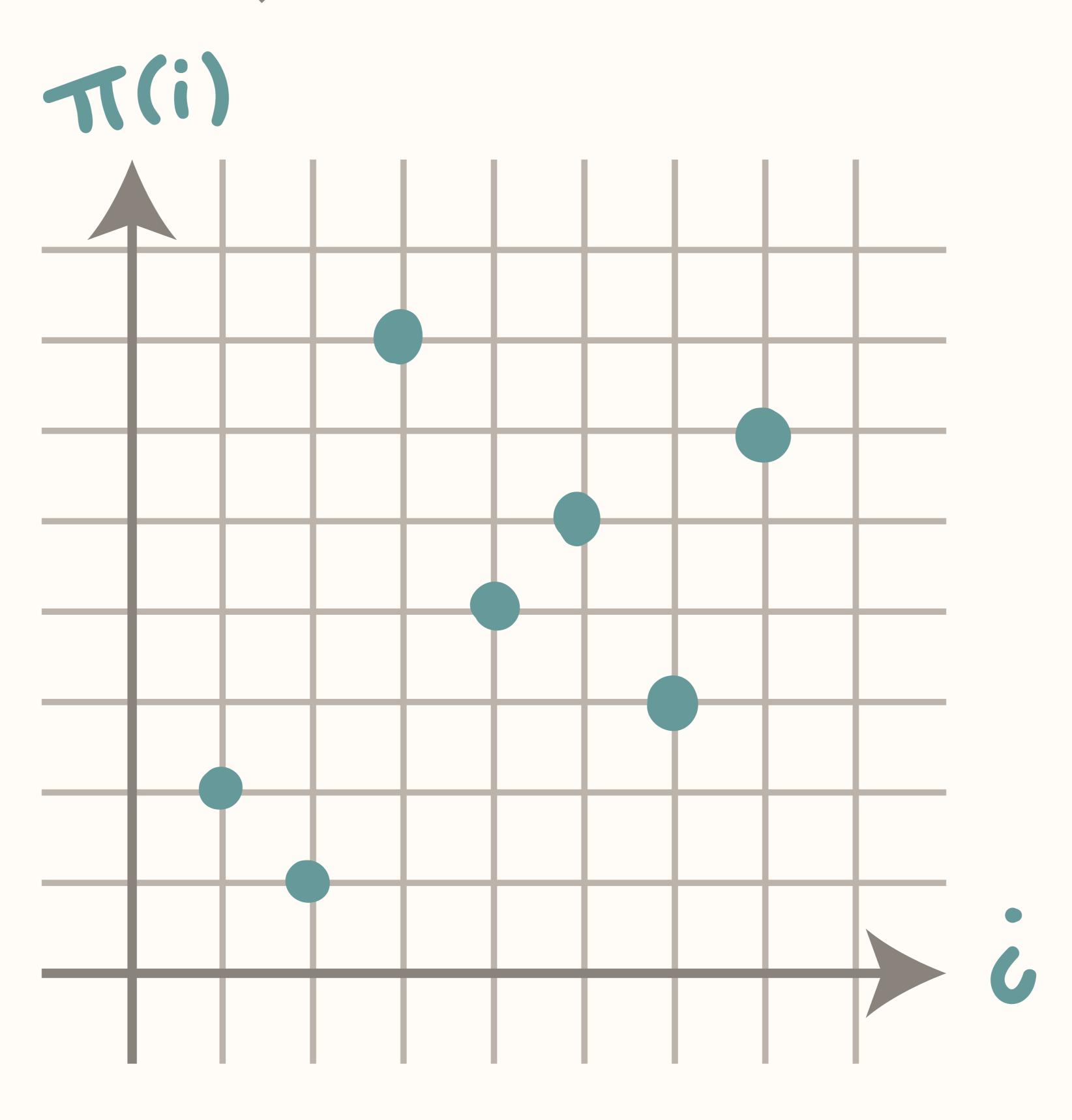


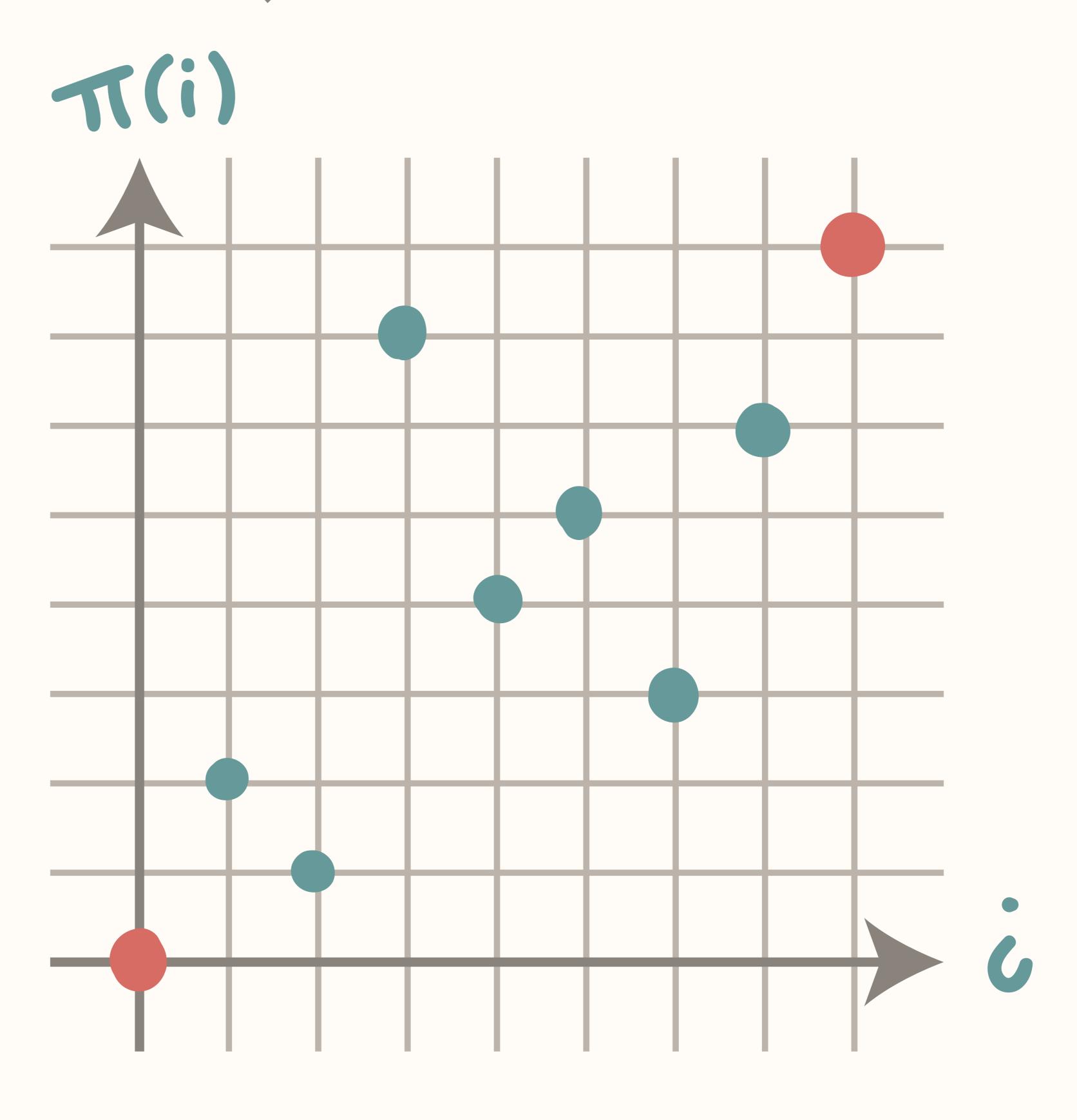
Plane permutation = No edge crossing in the

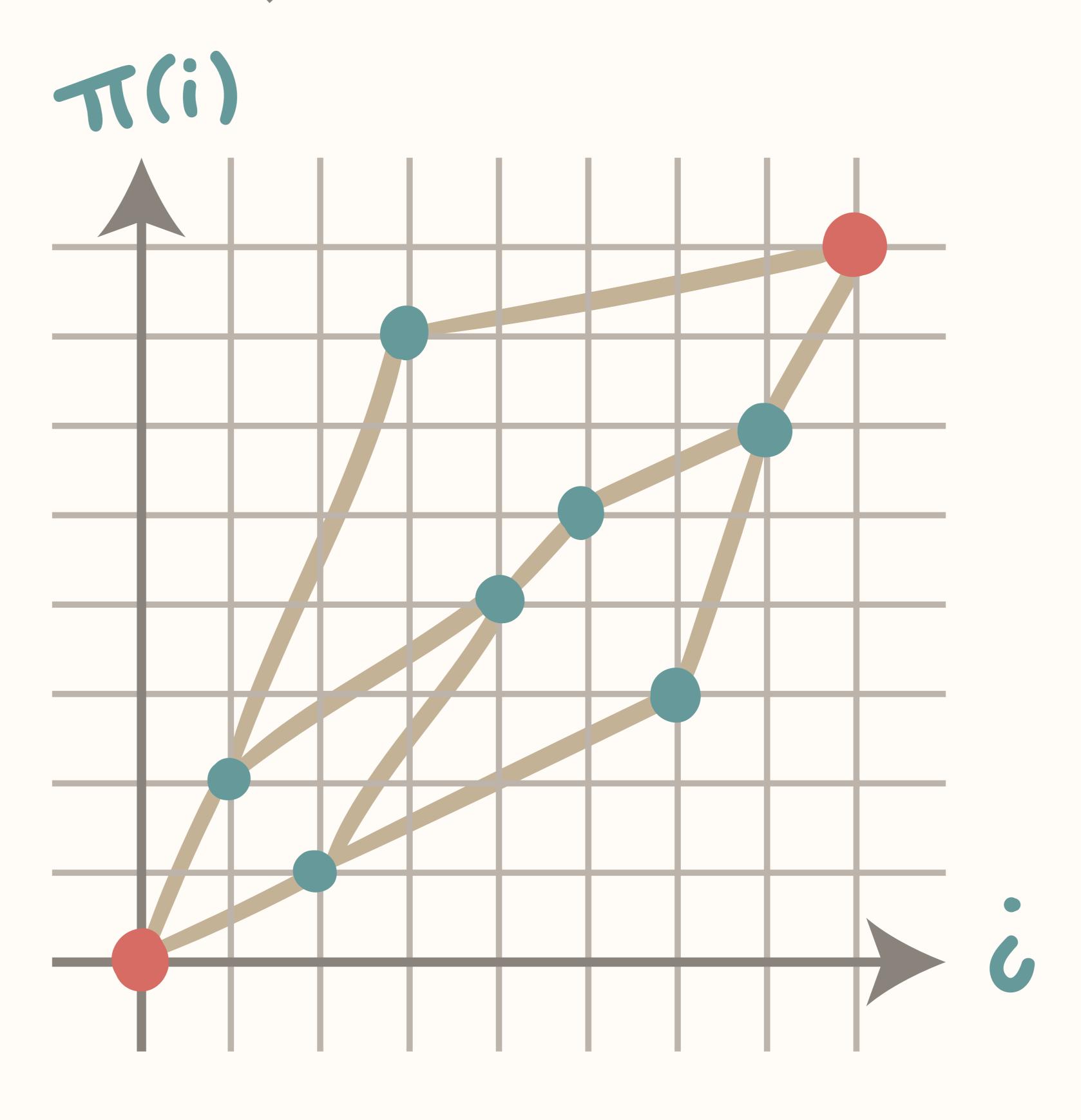
dominance diagram

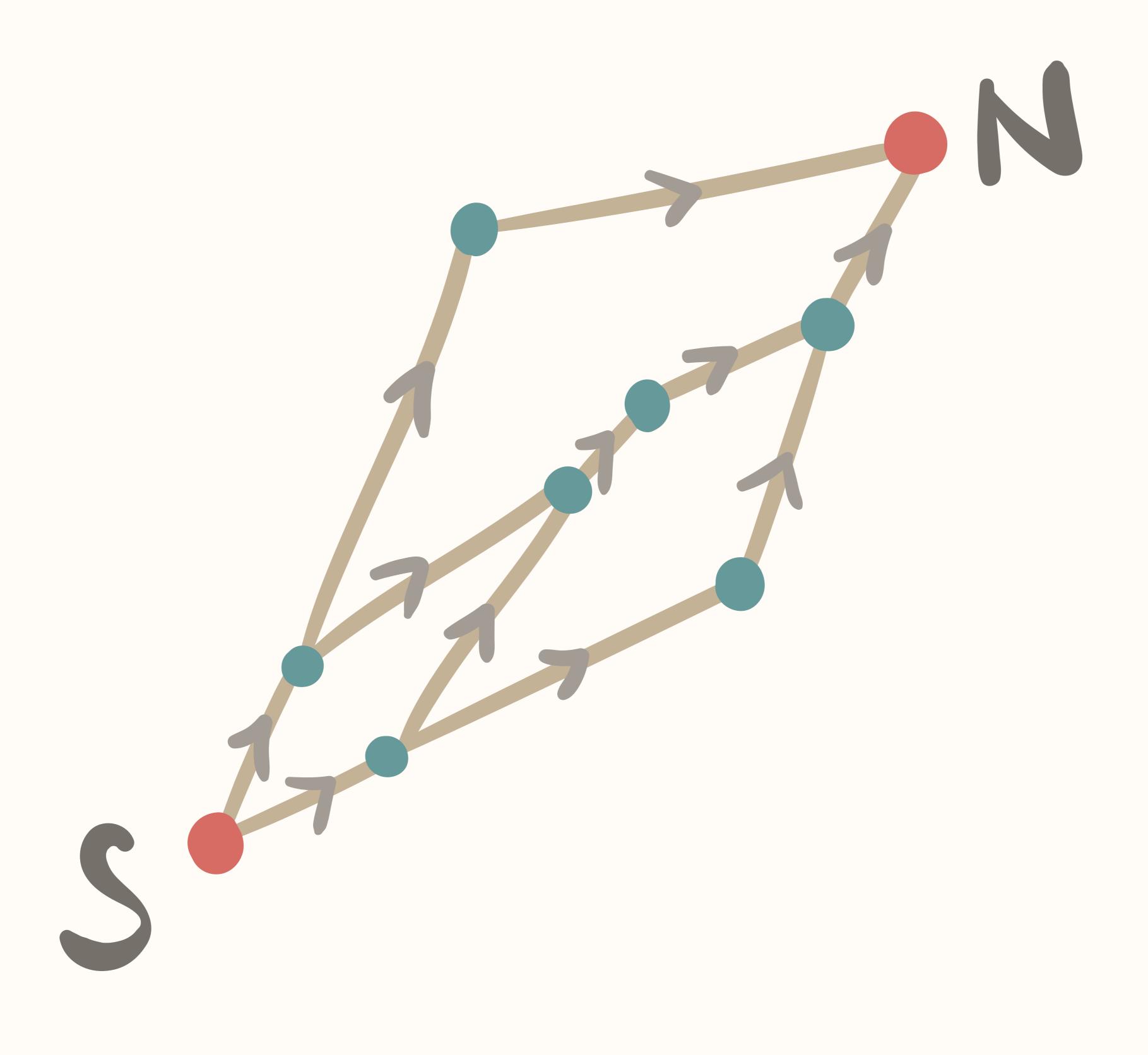
= Avoid the vincular pattern :



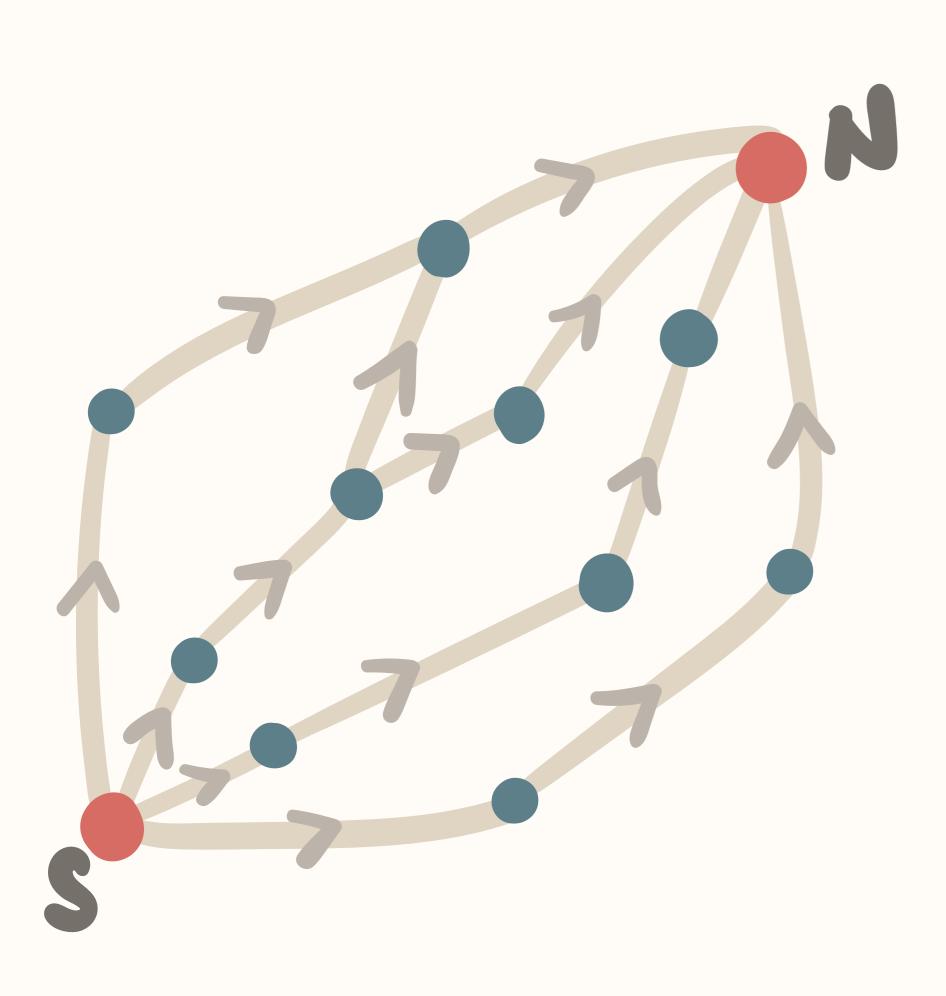


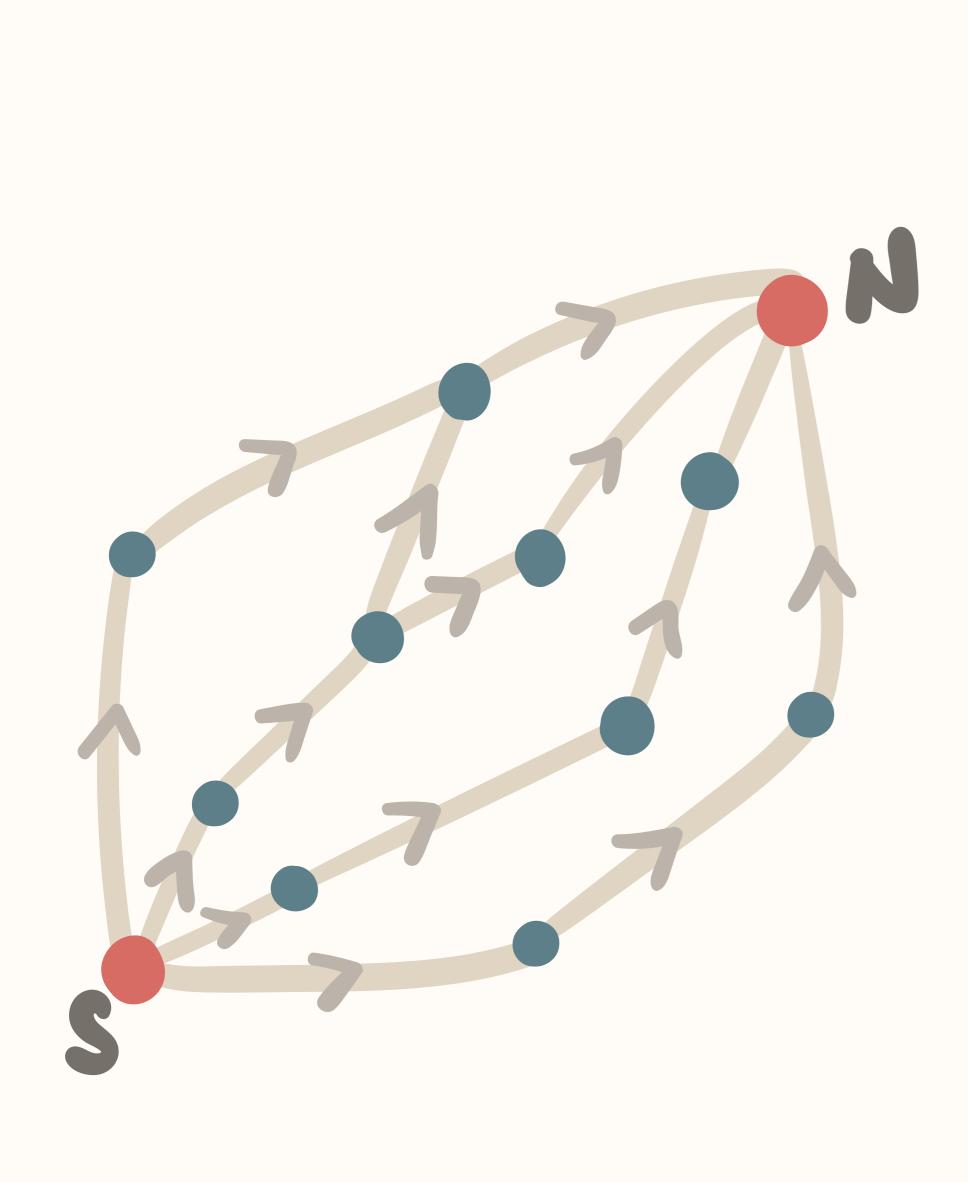


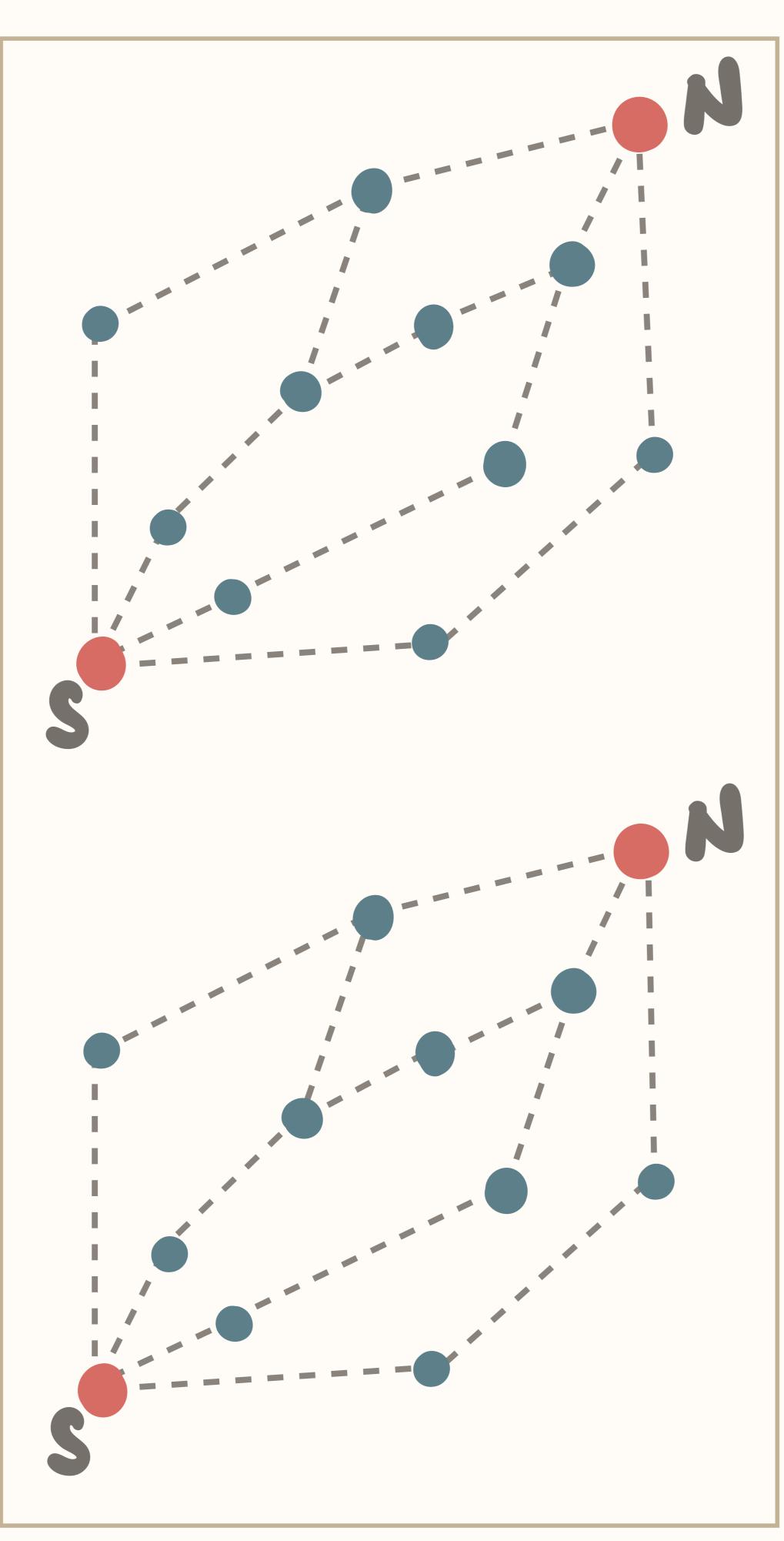


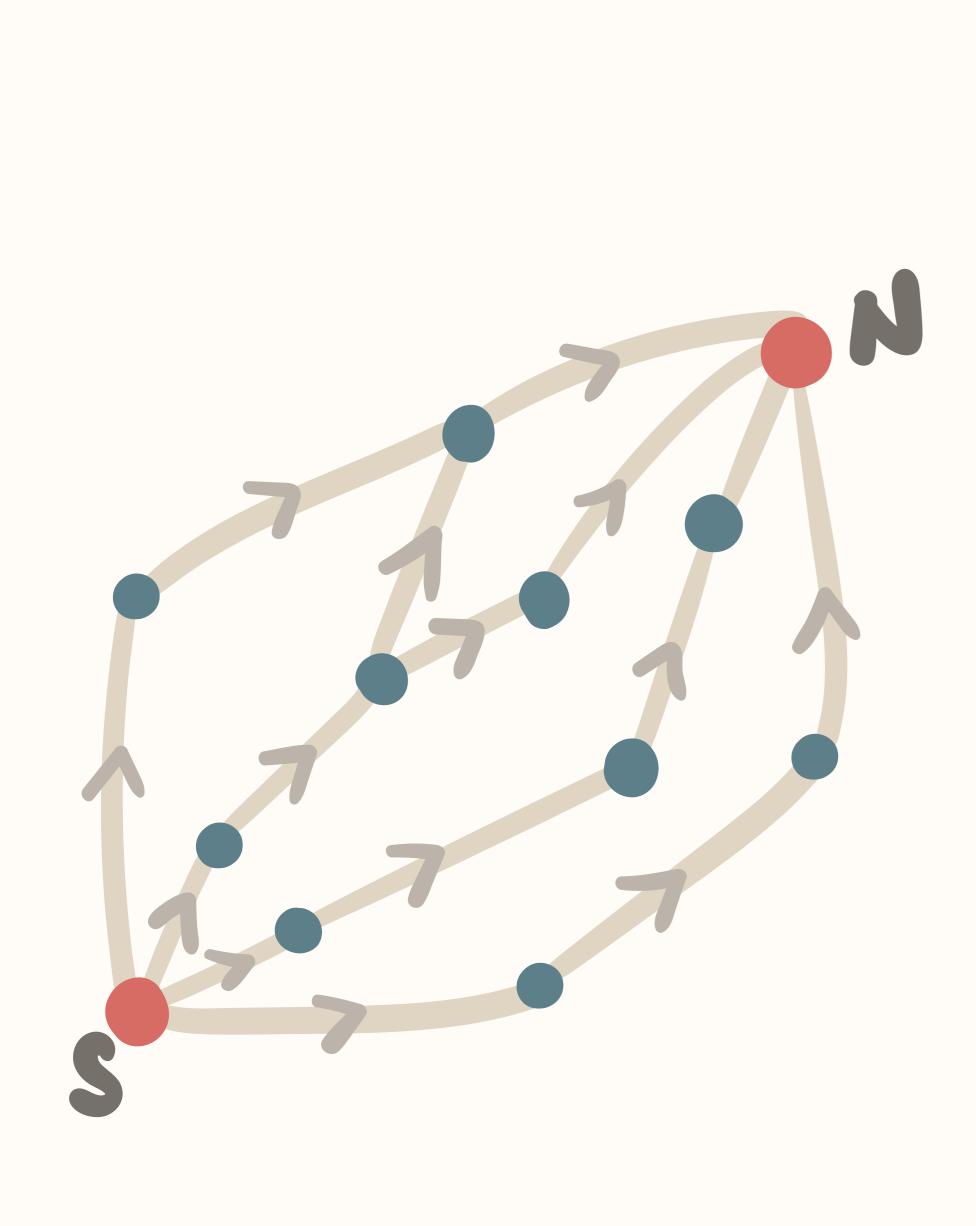


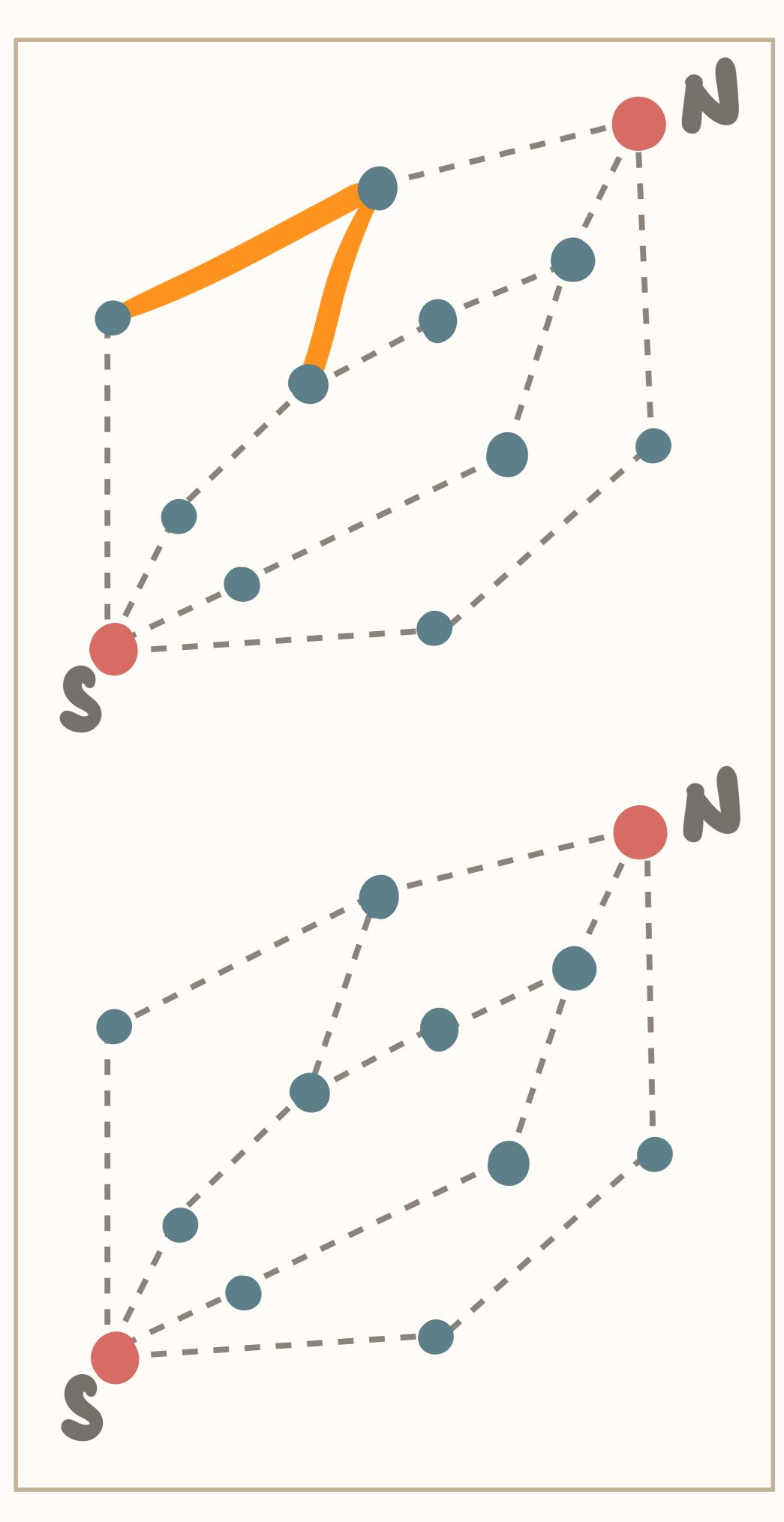
Poset — Plane permutation

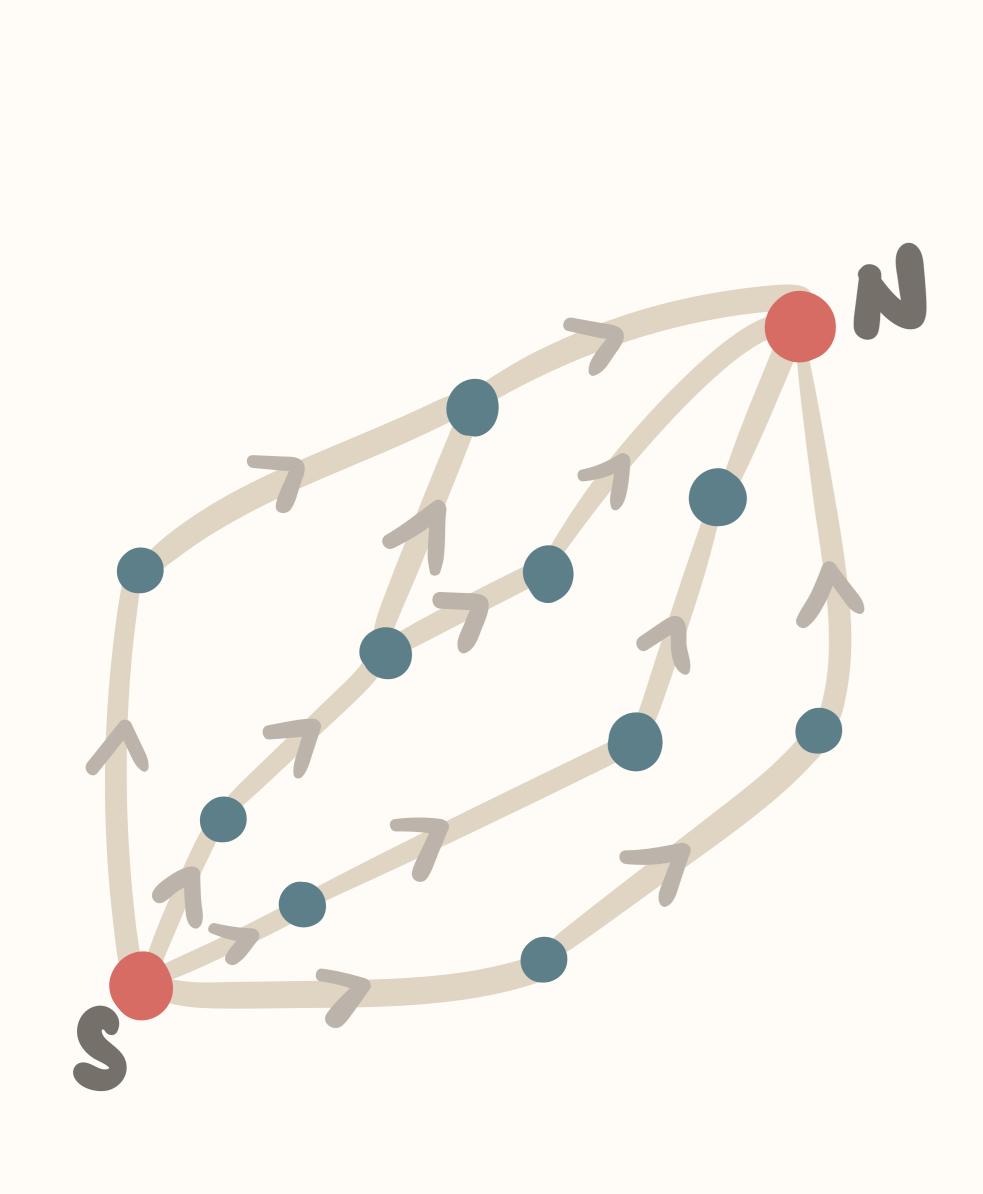


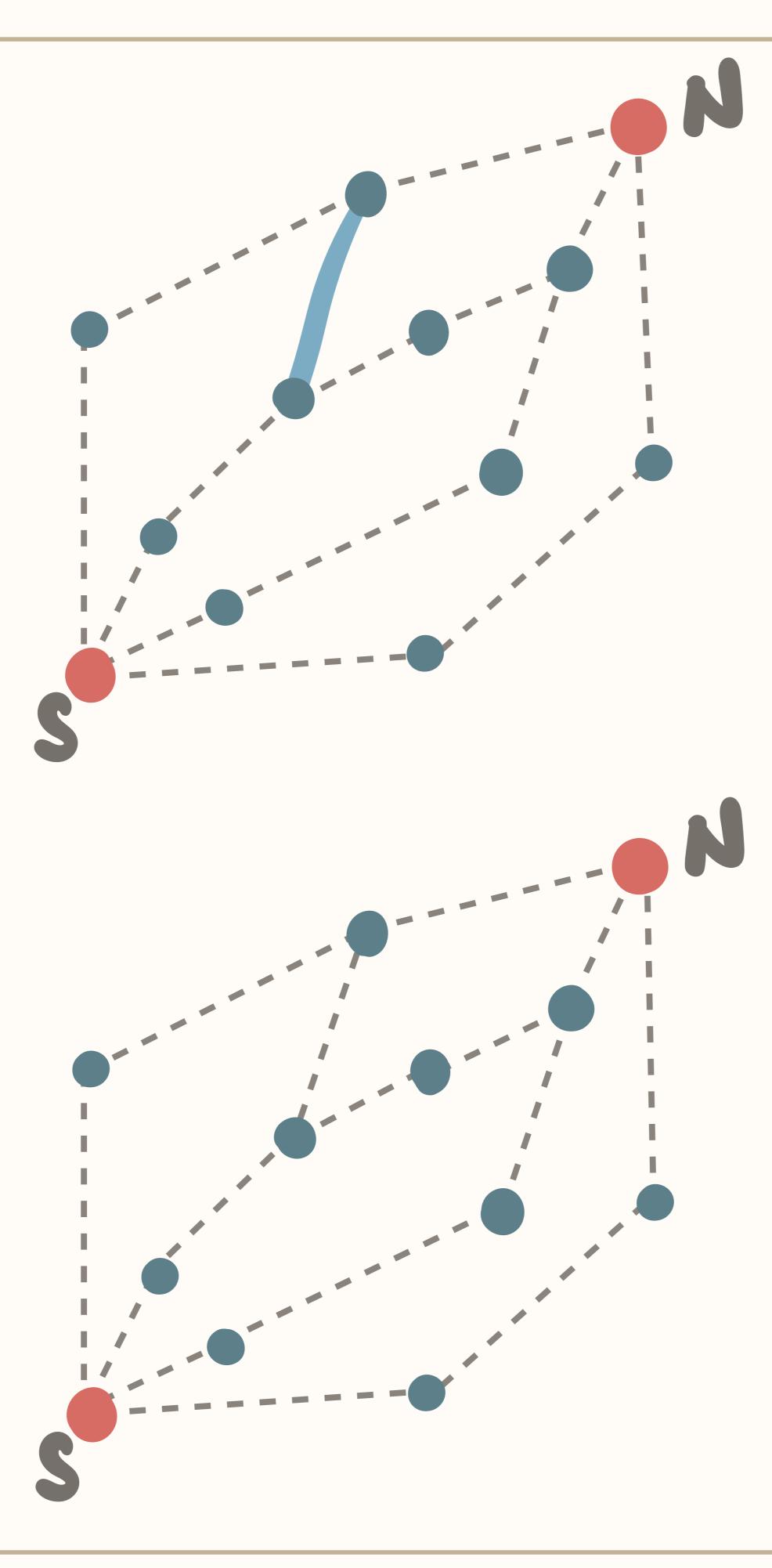


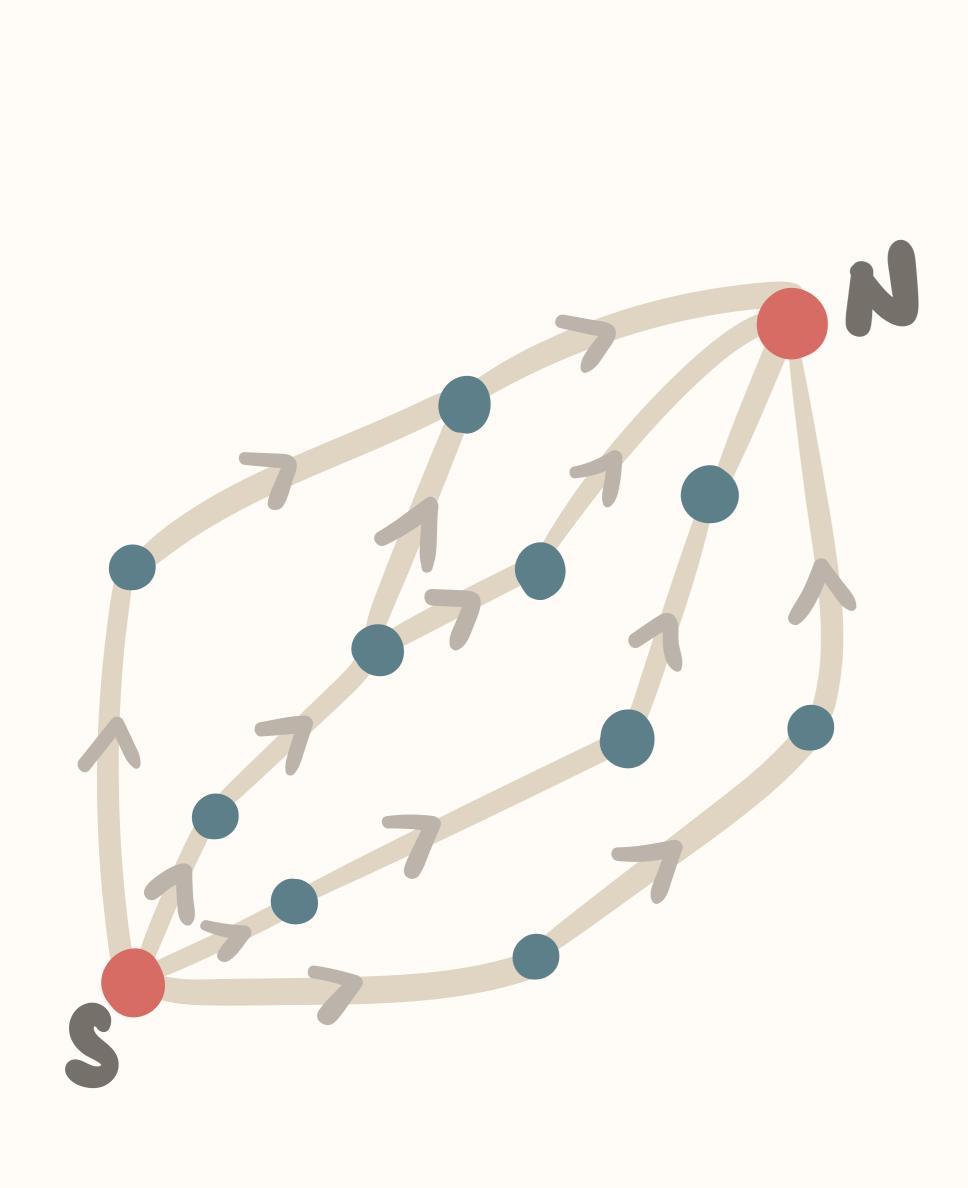


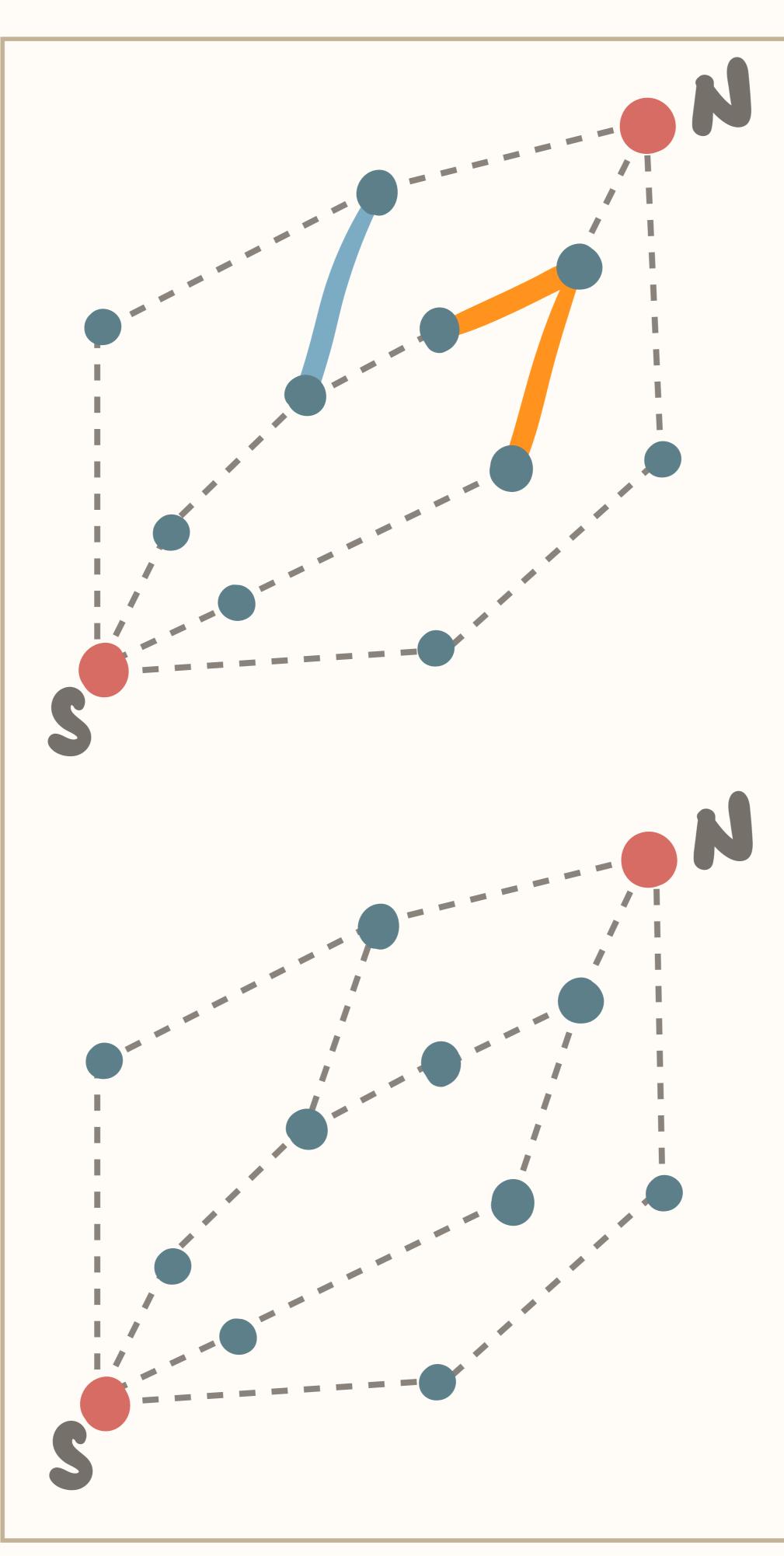


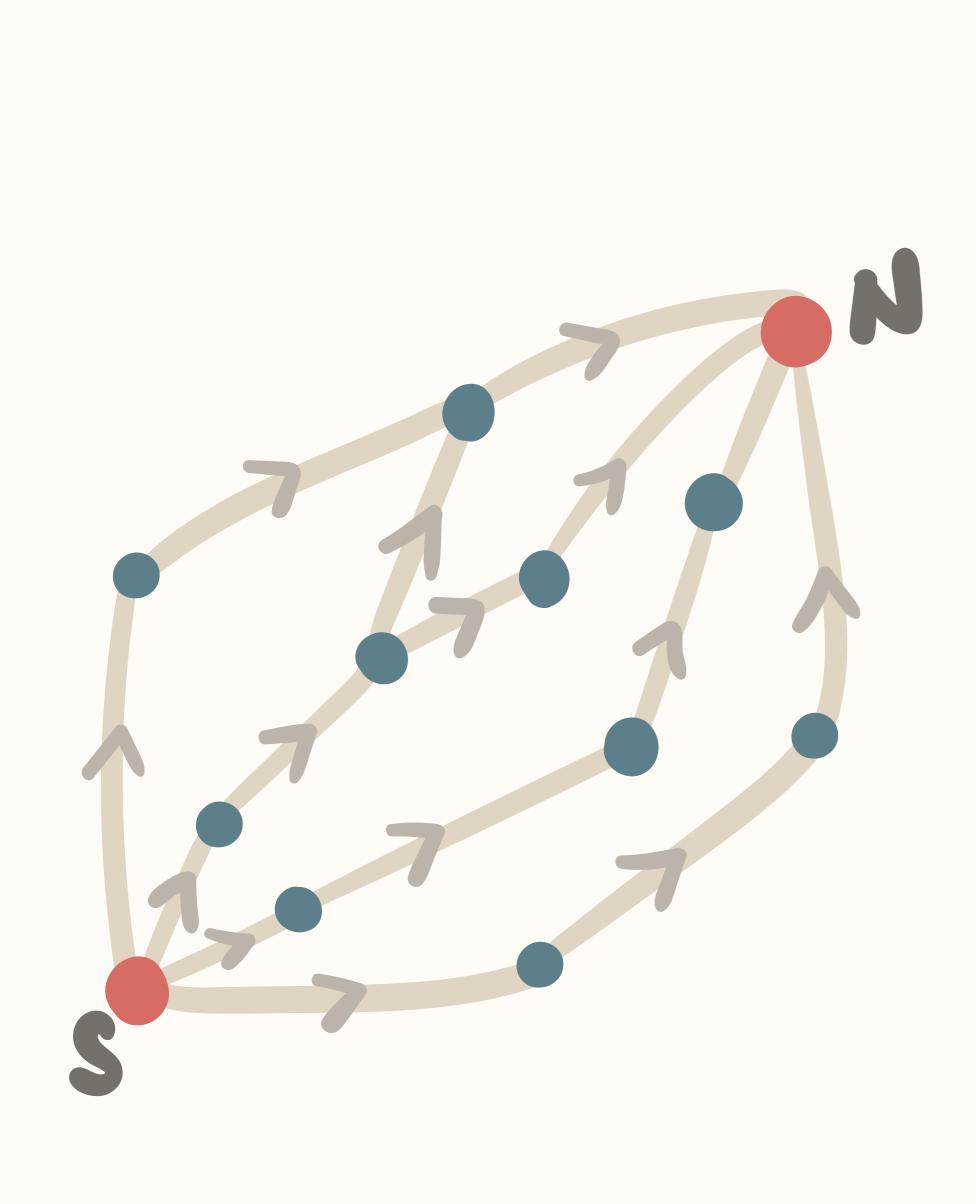


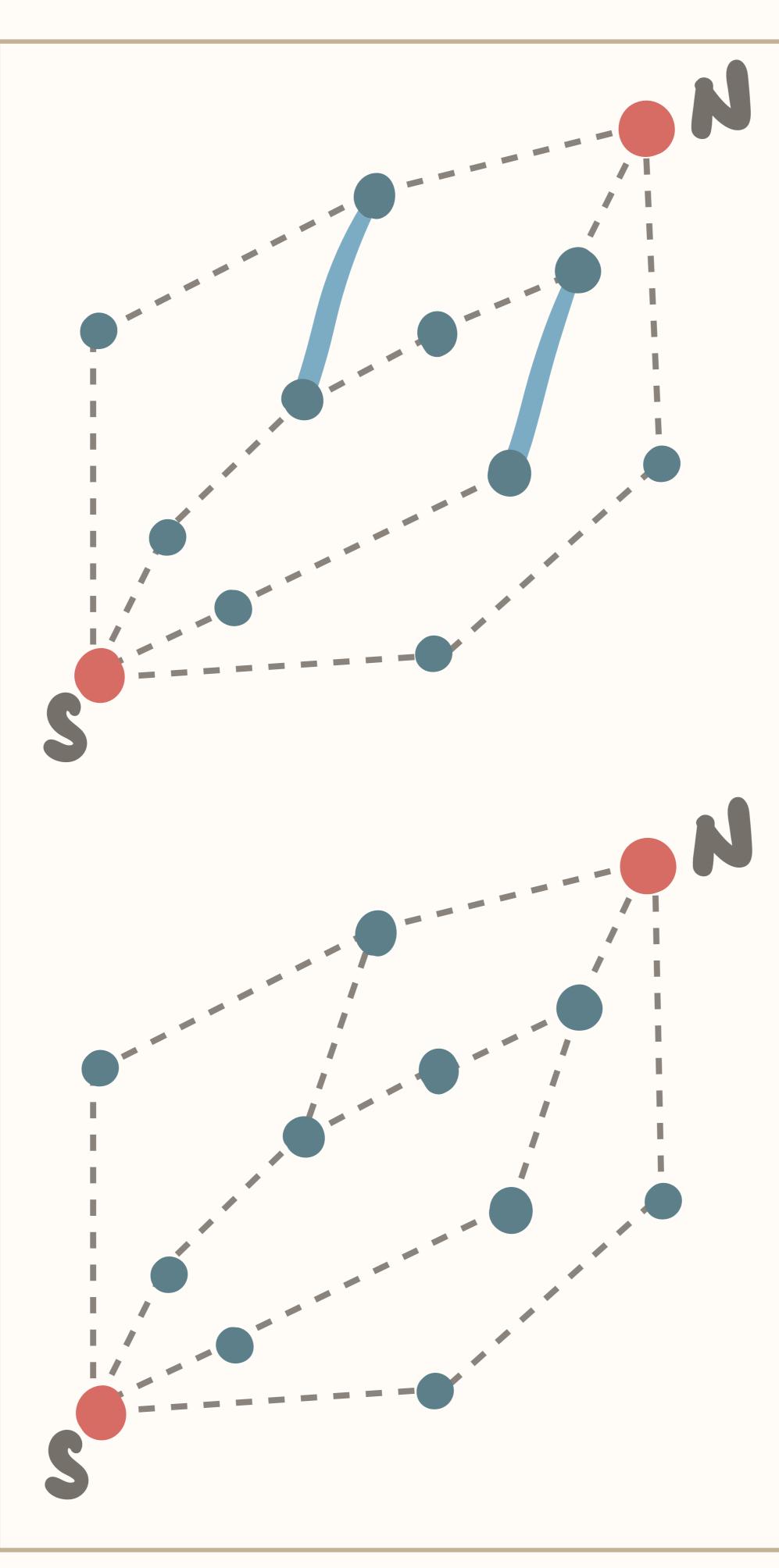


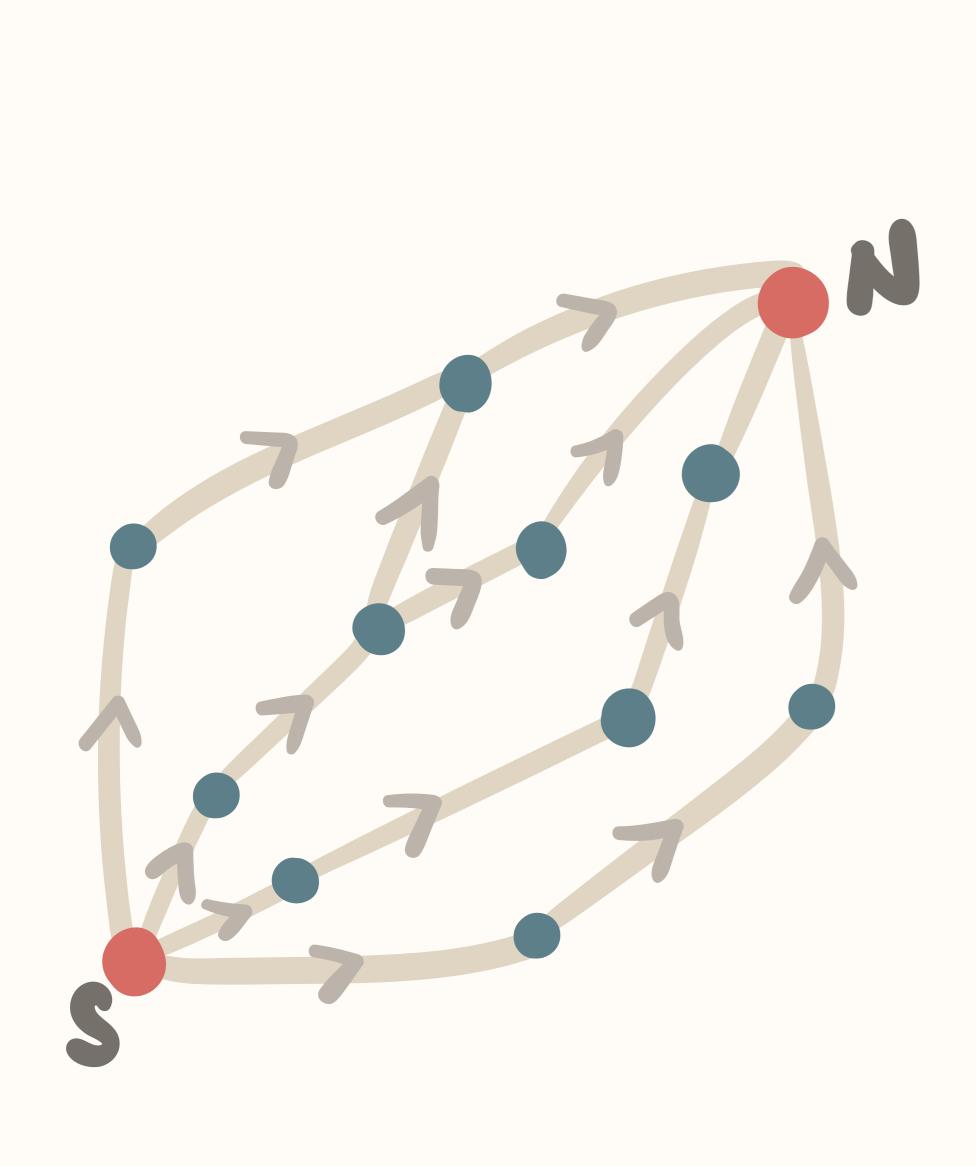


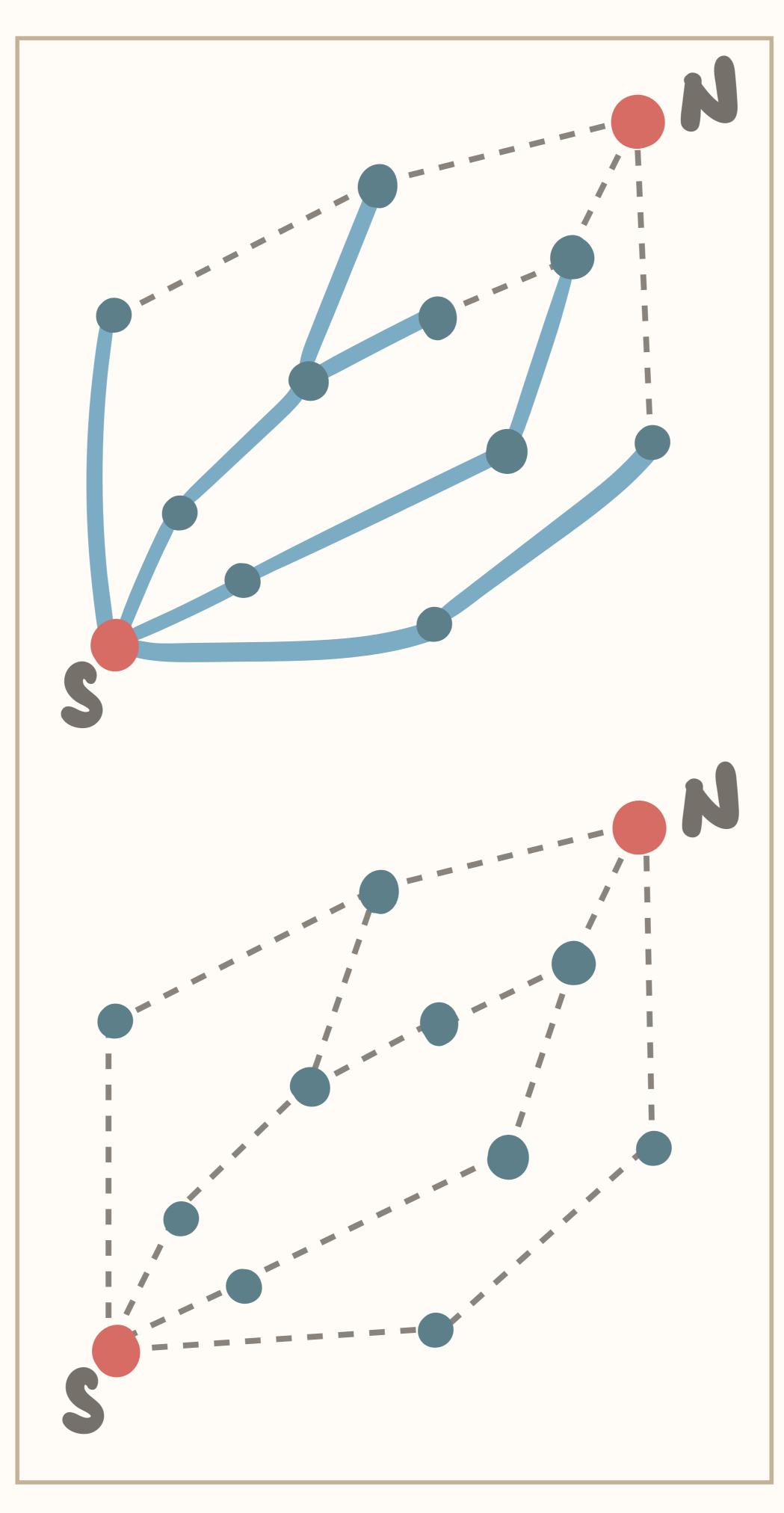


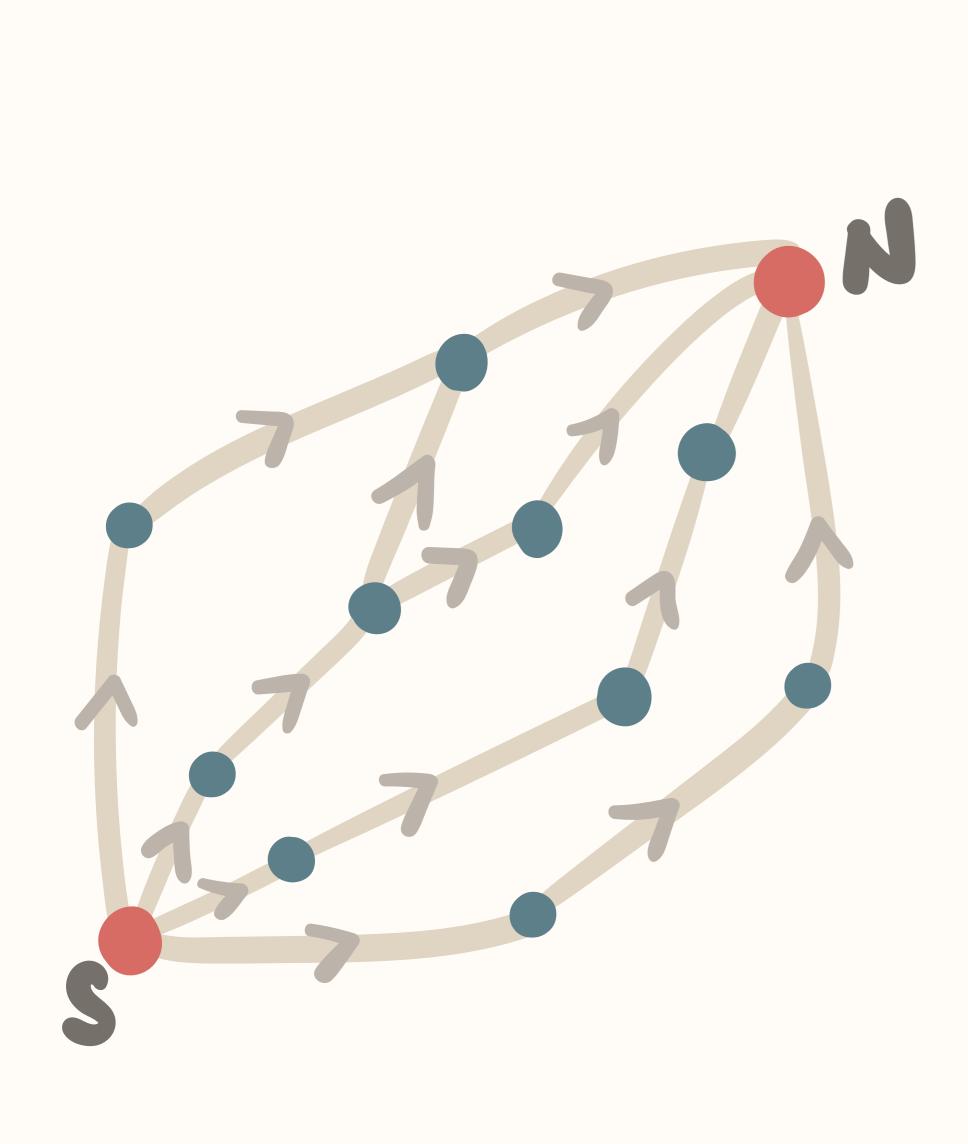


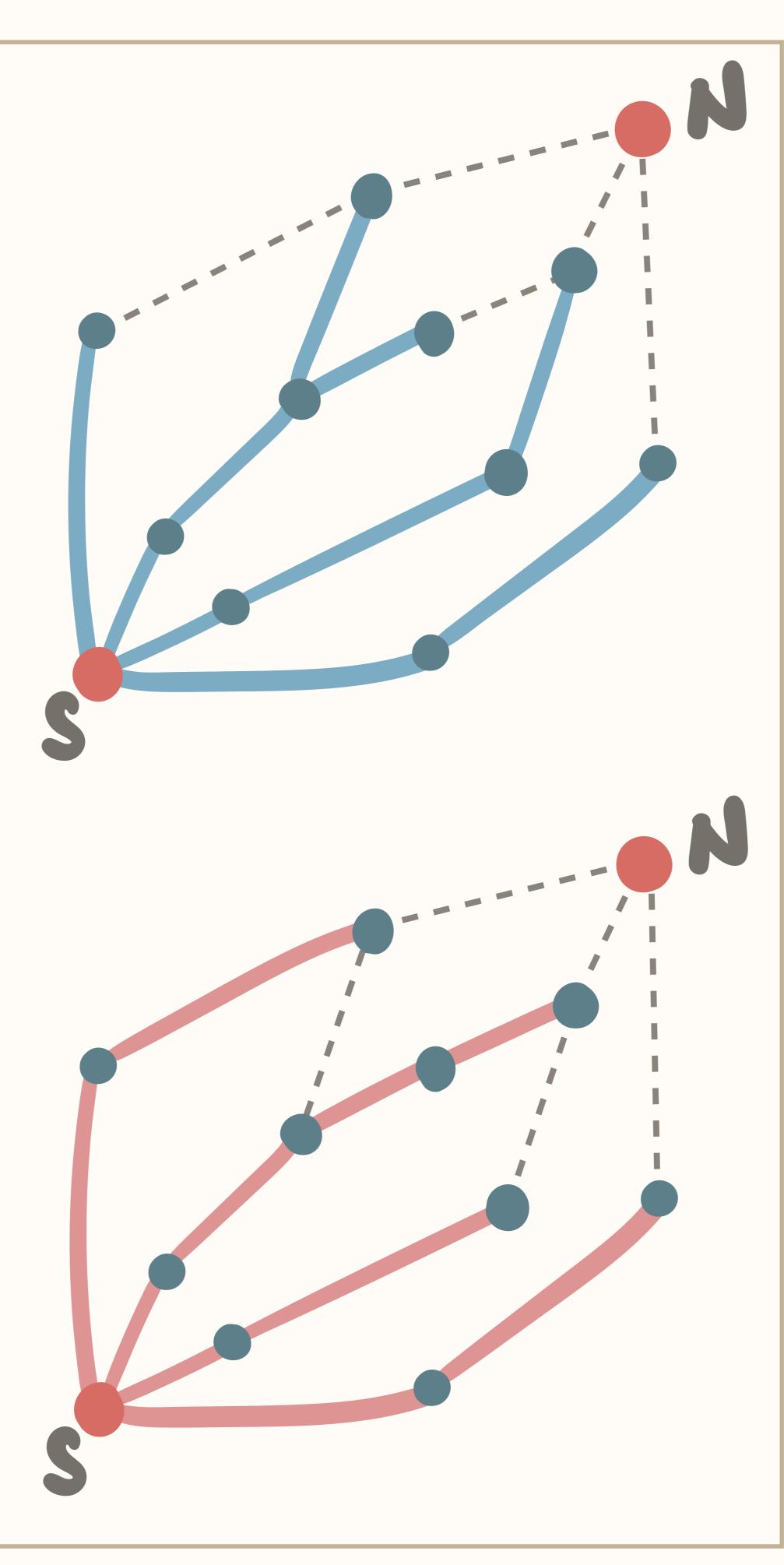


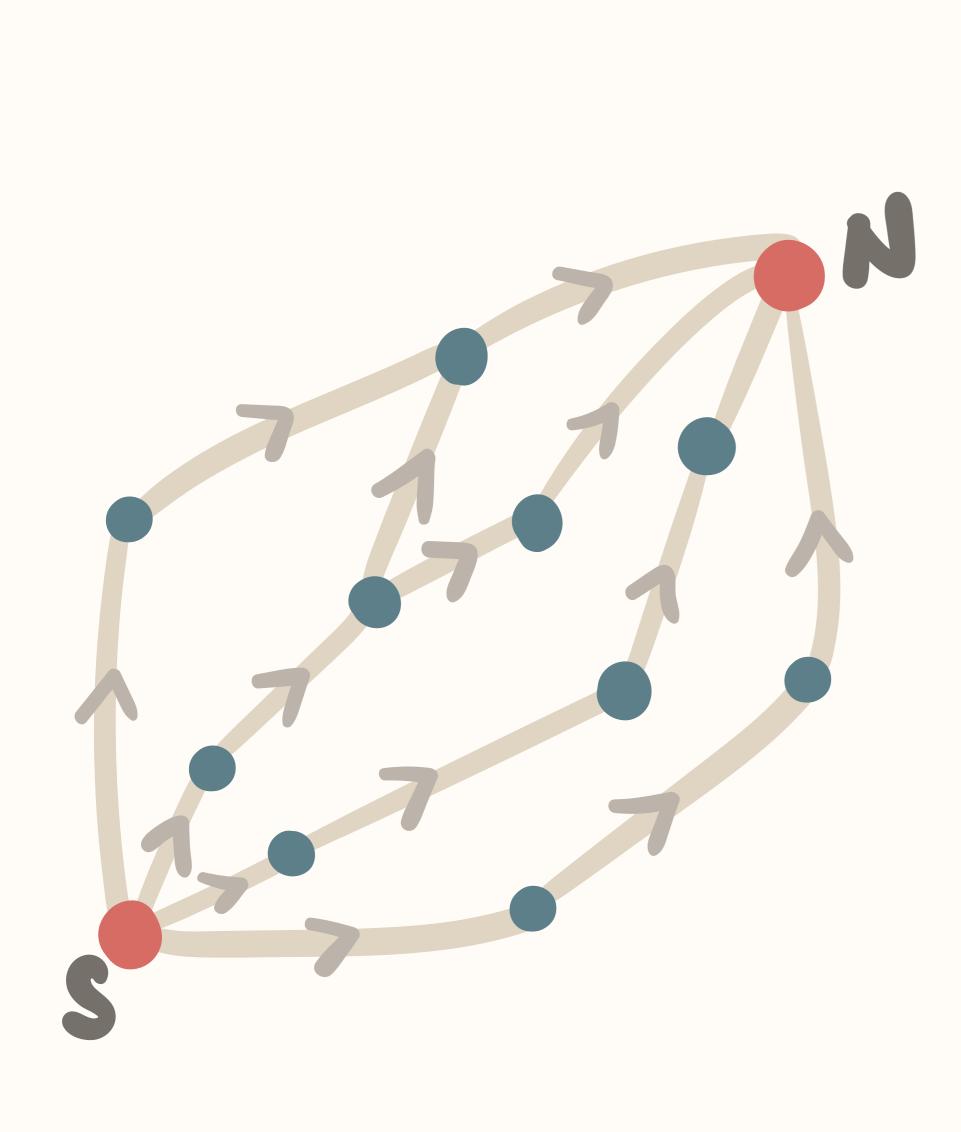


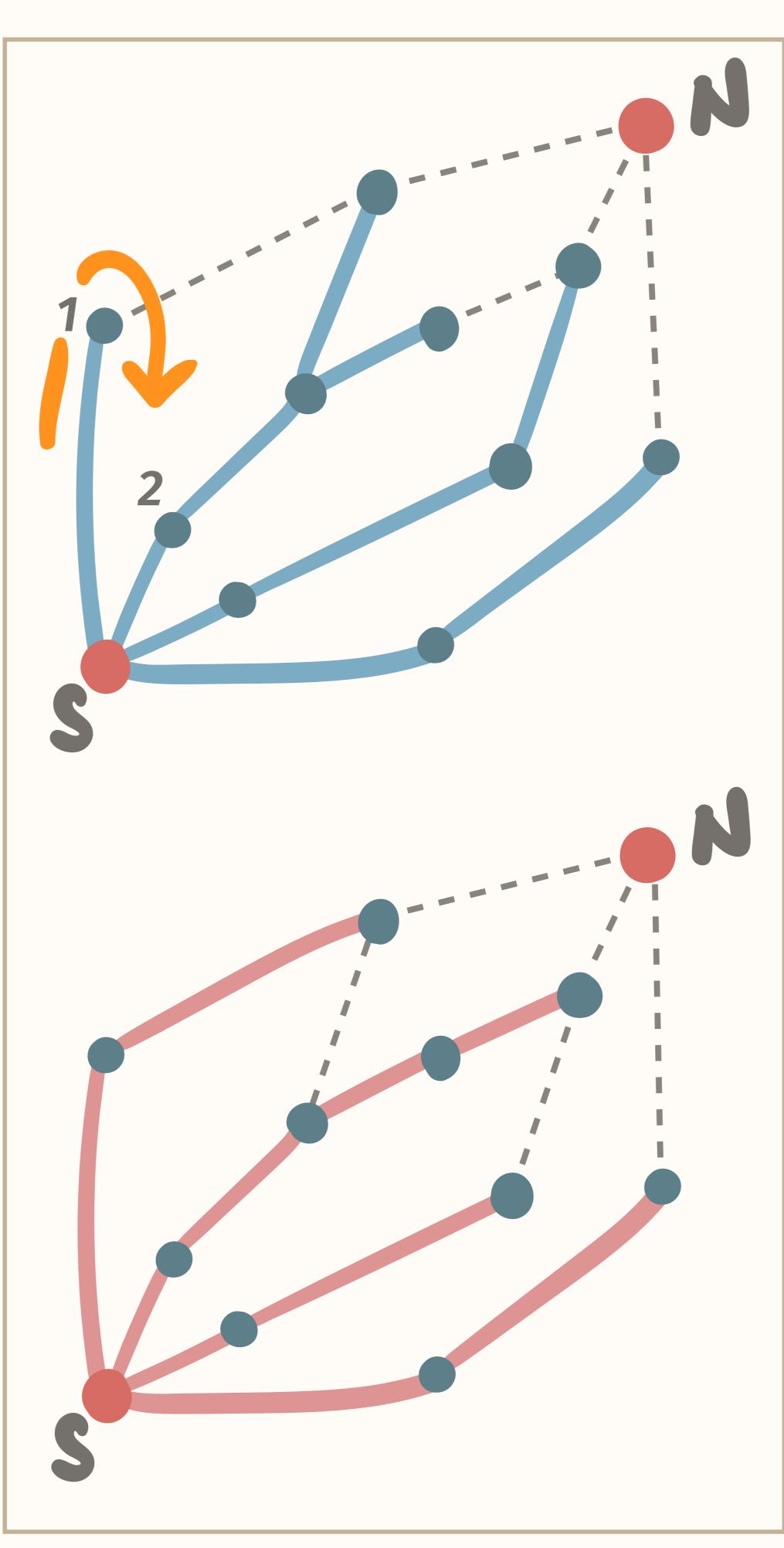


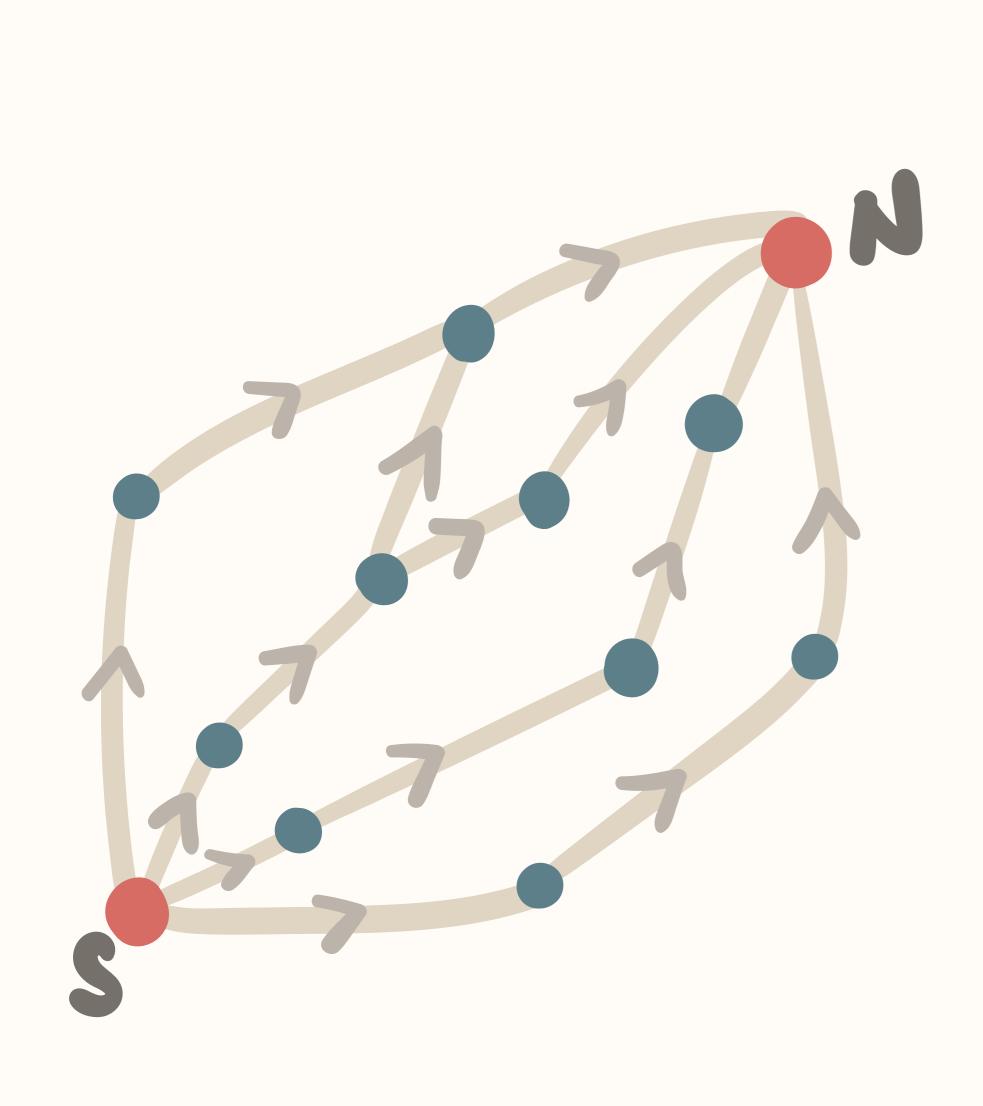


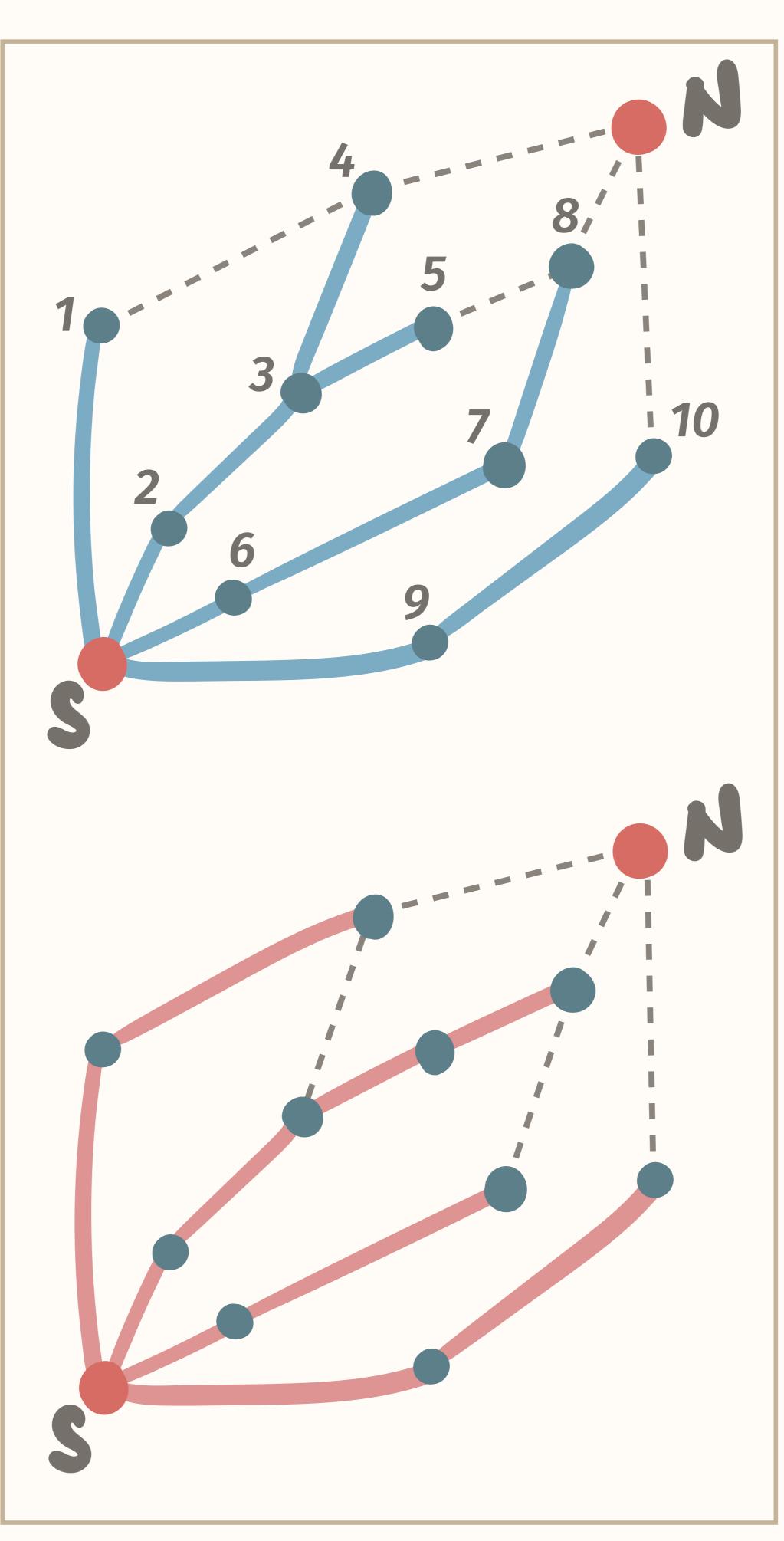


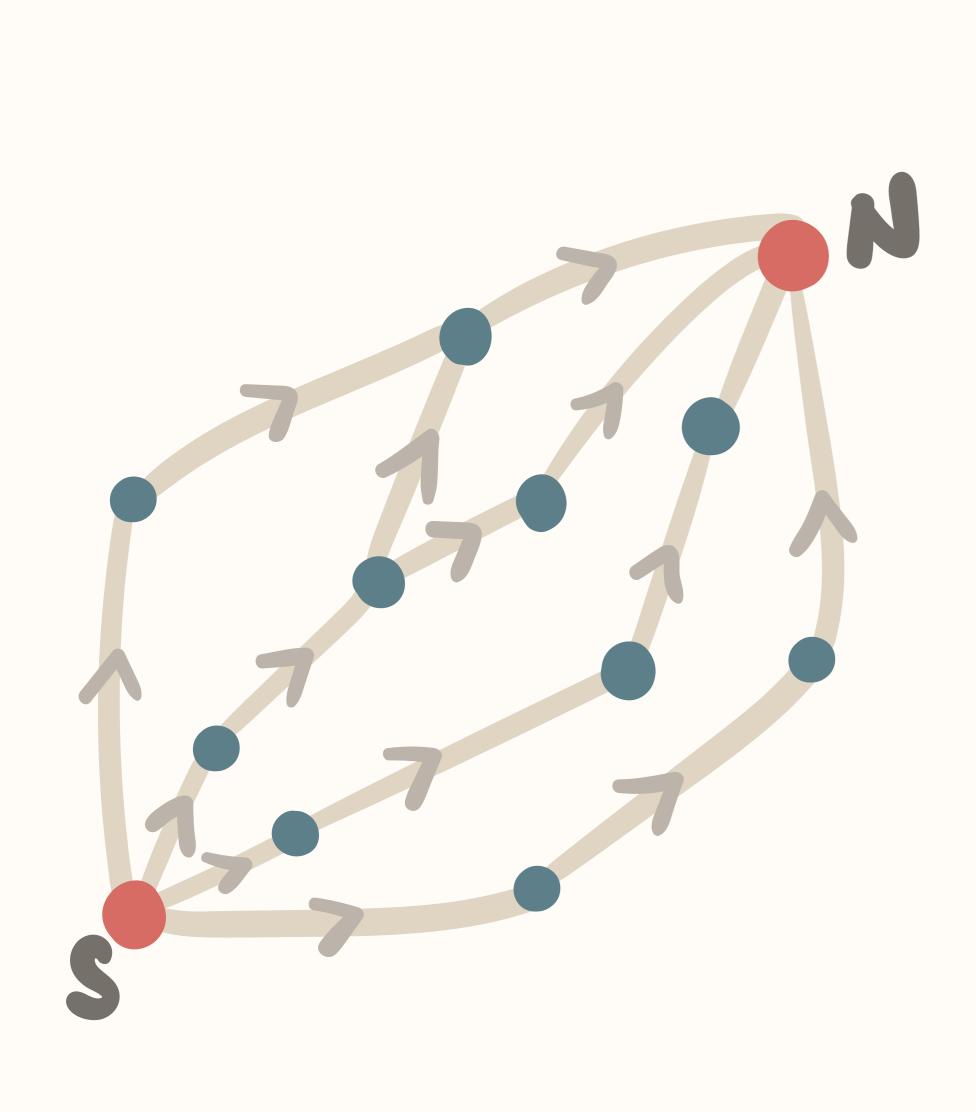


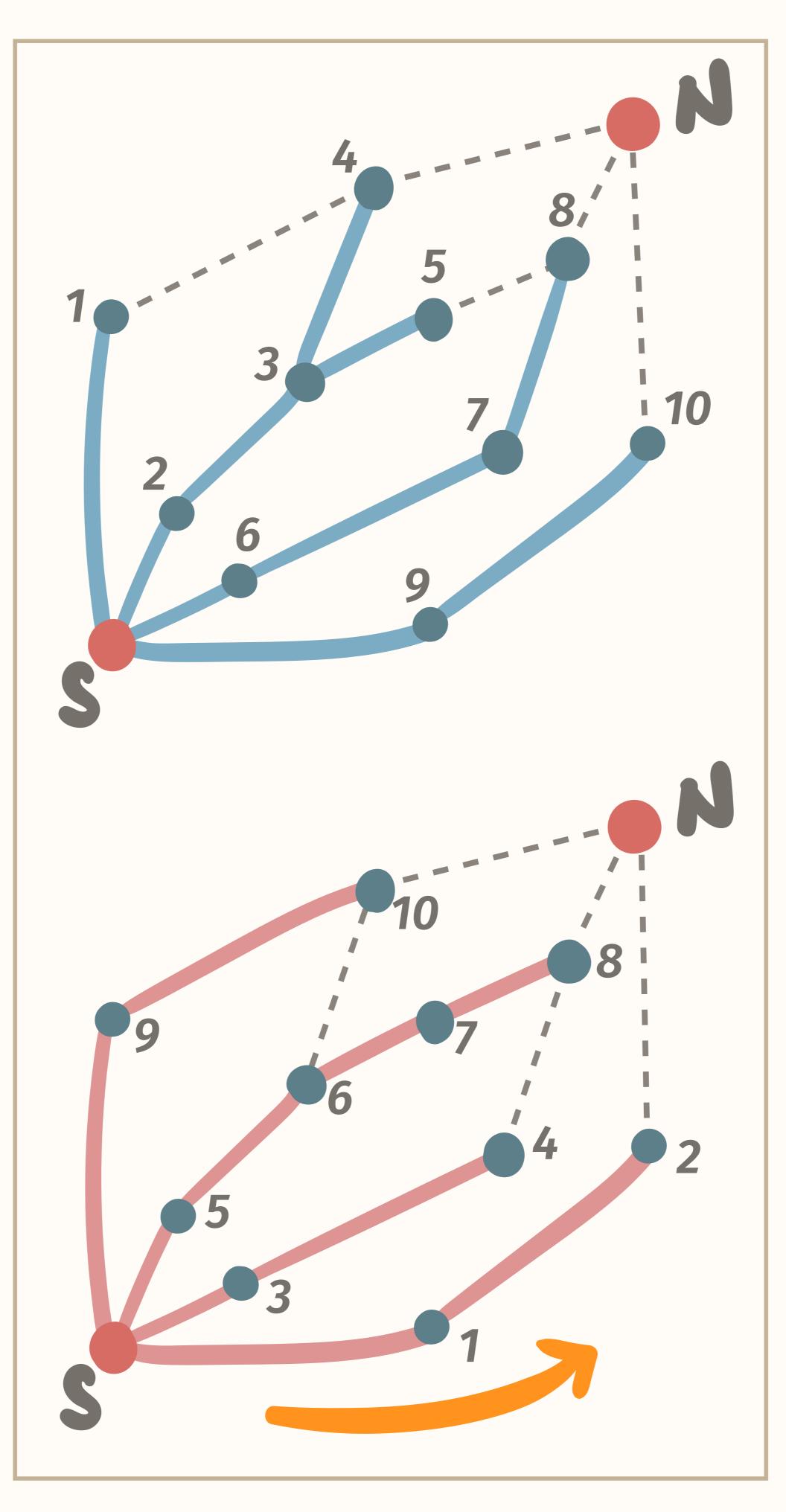


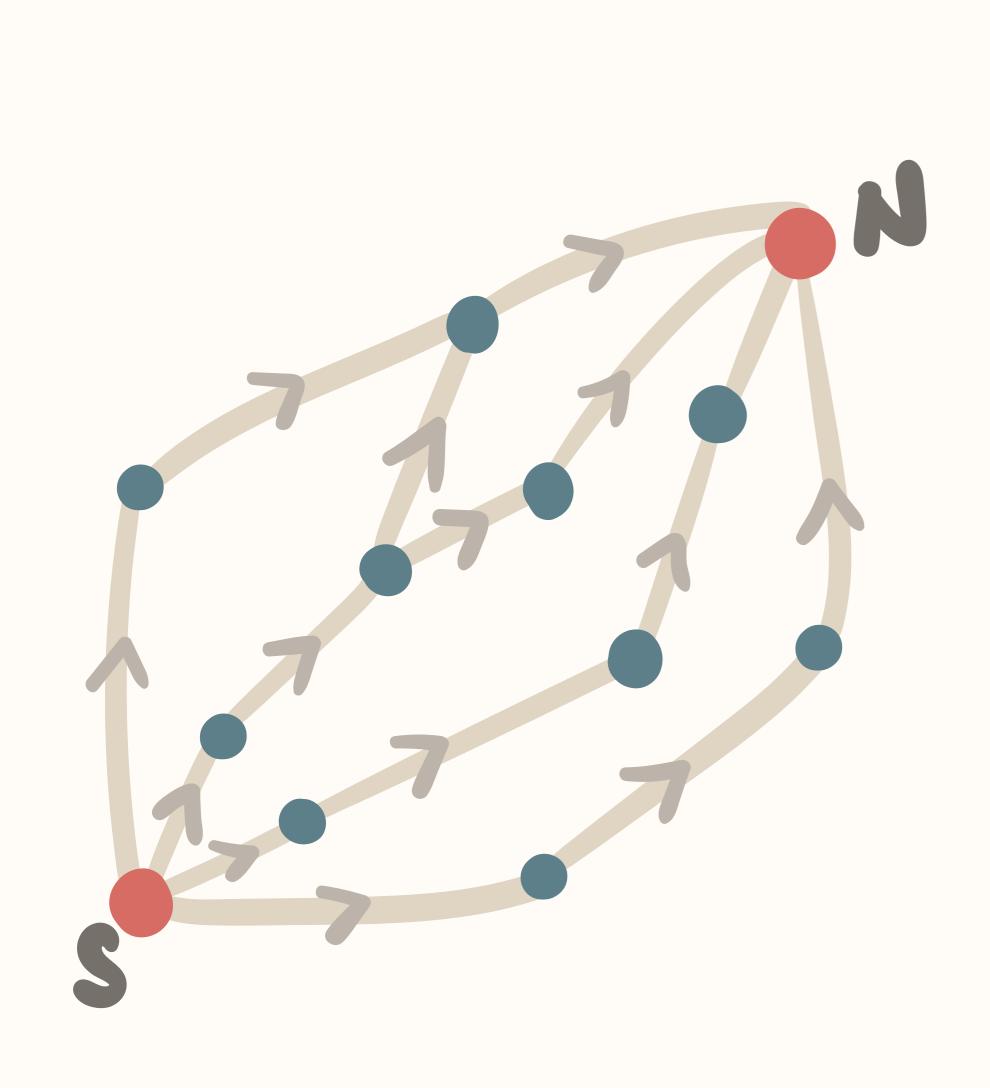


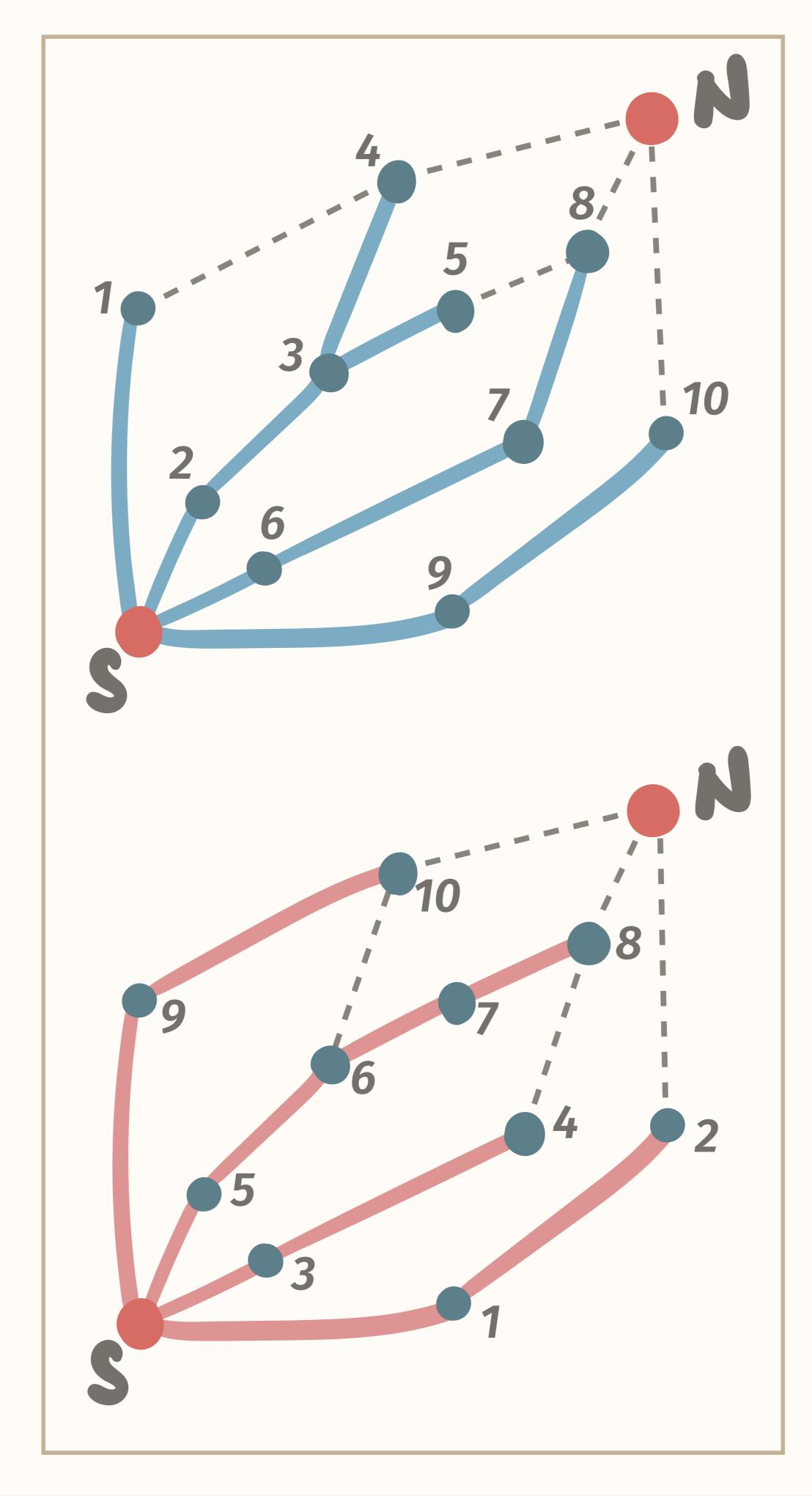


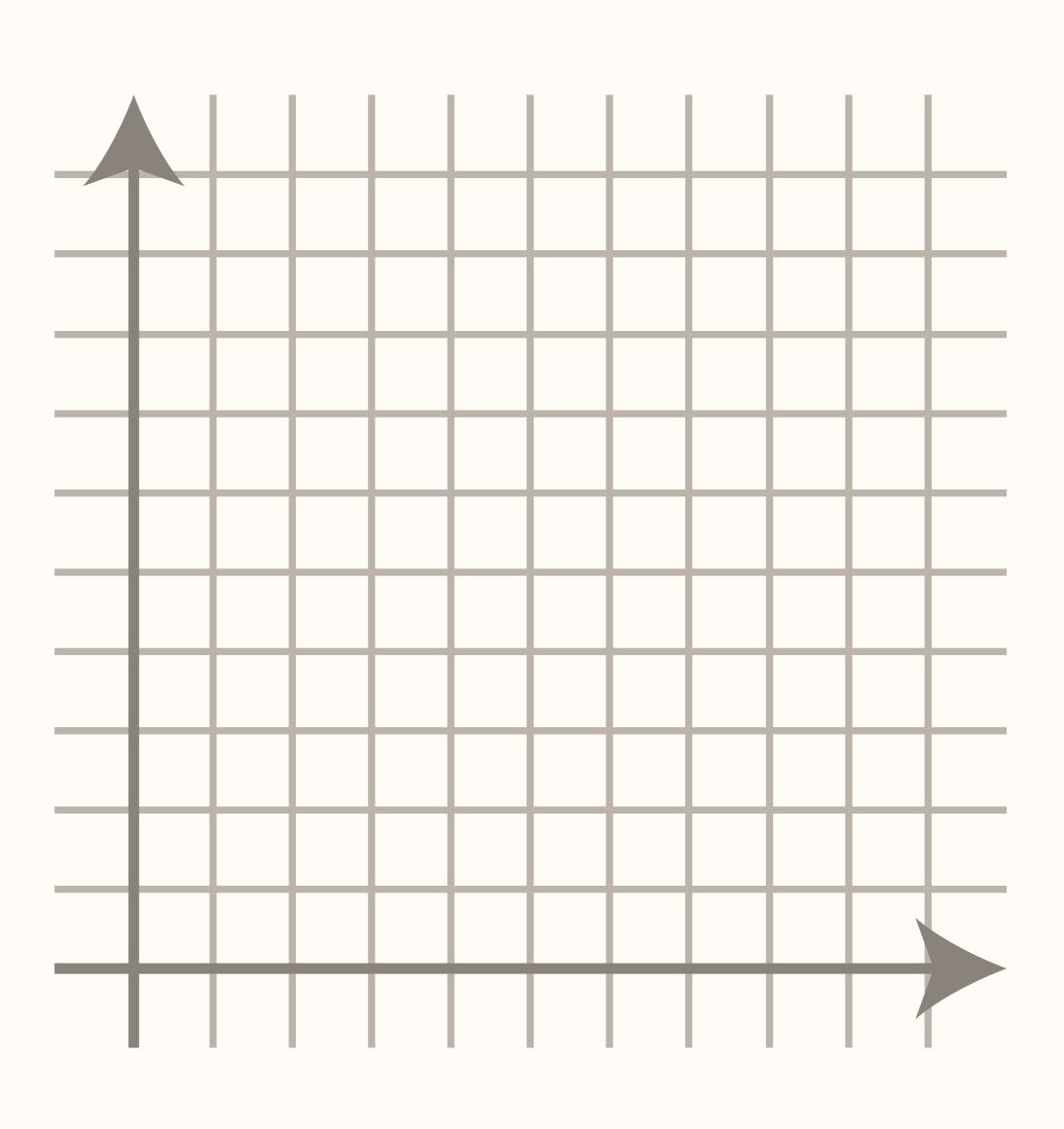




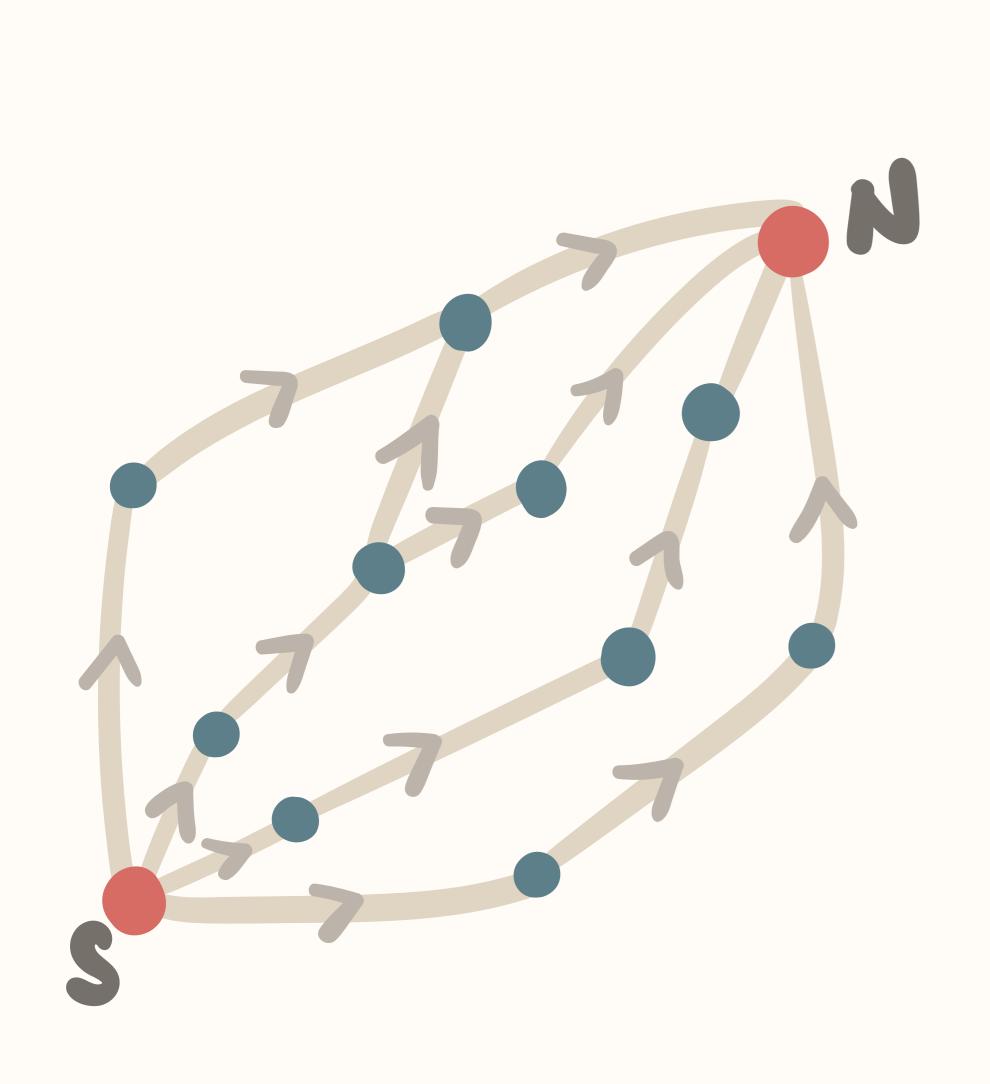


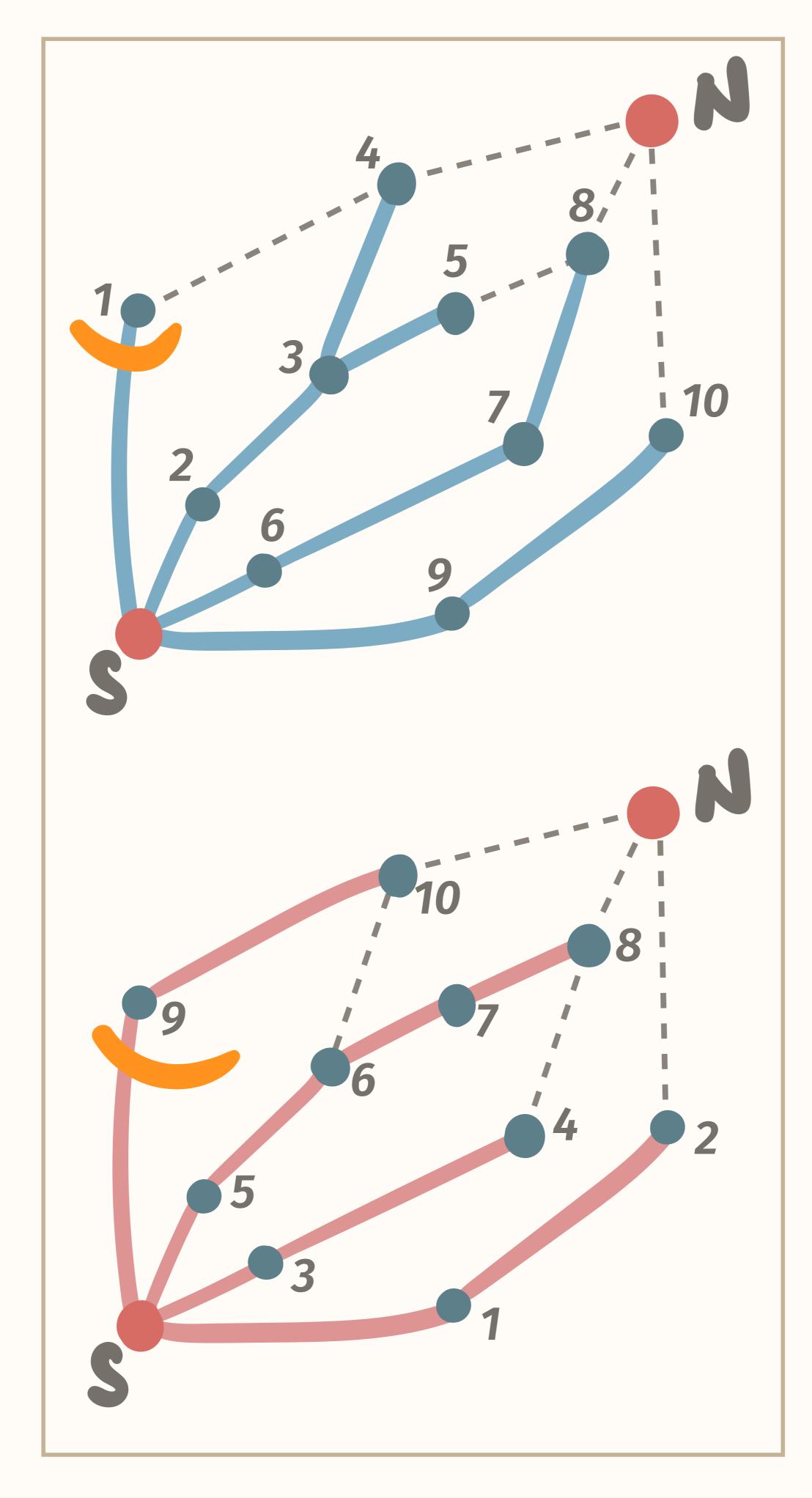


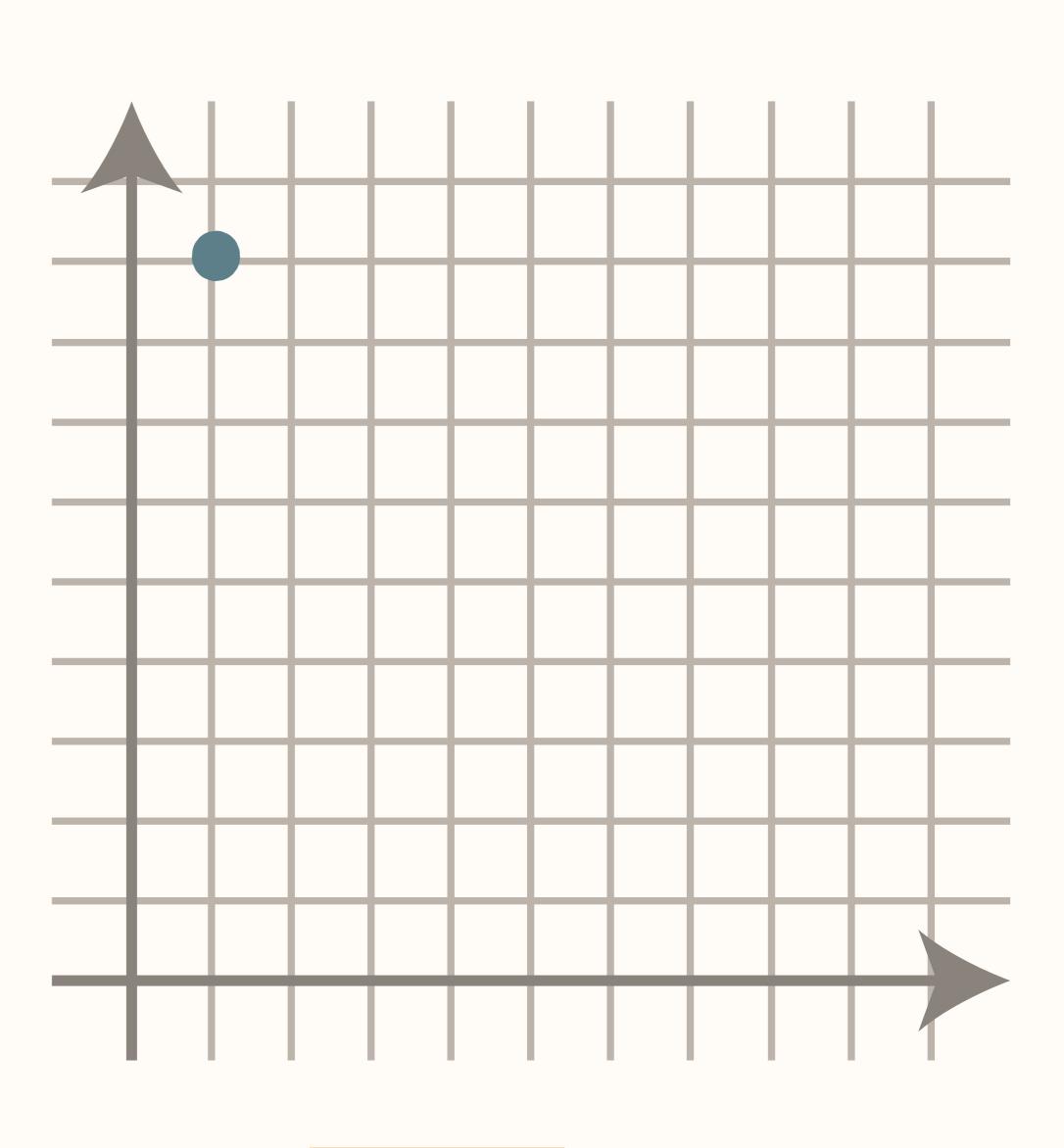




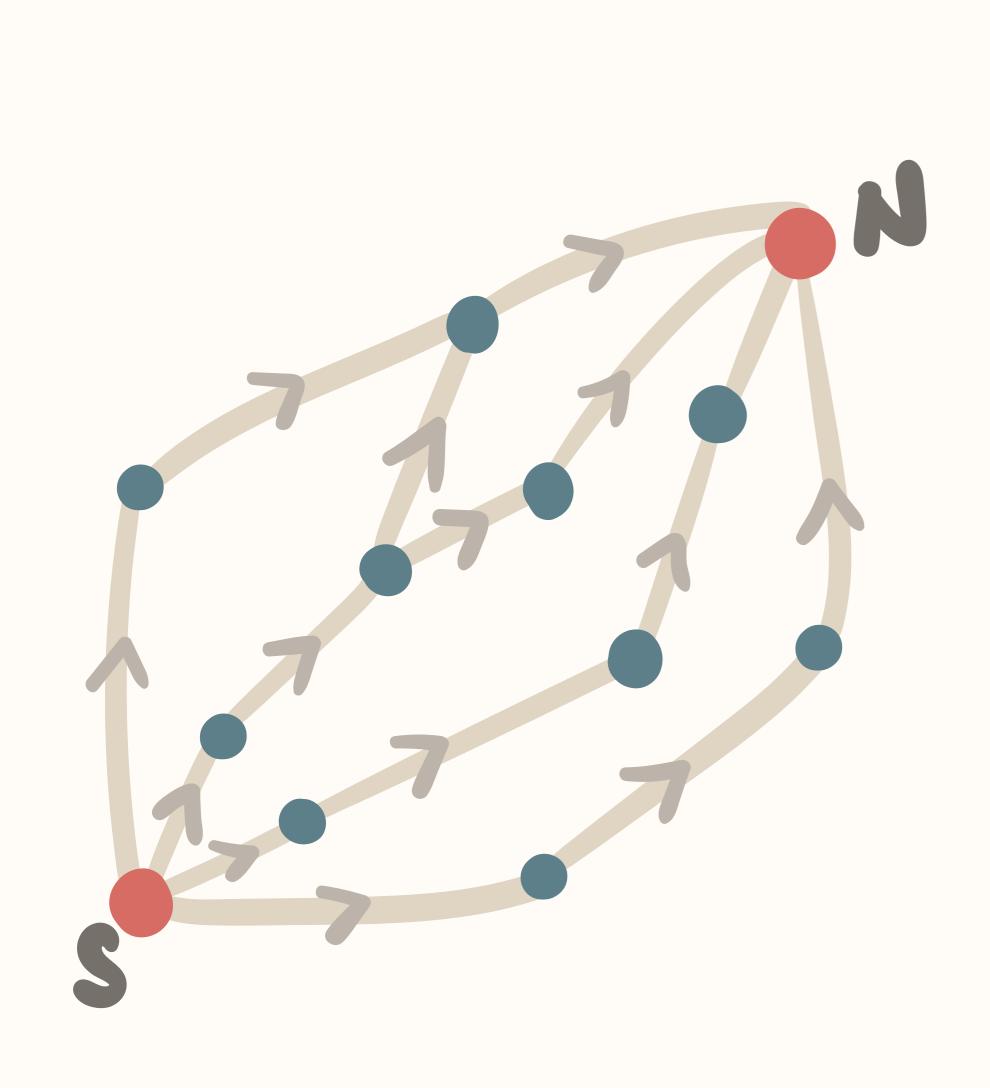
Poset — Plane permutation

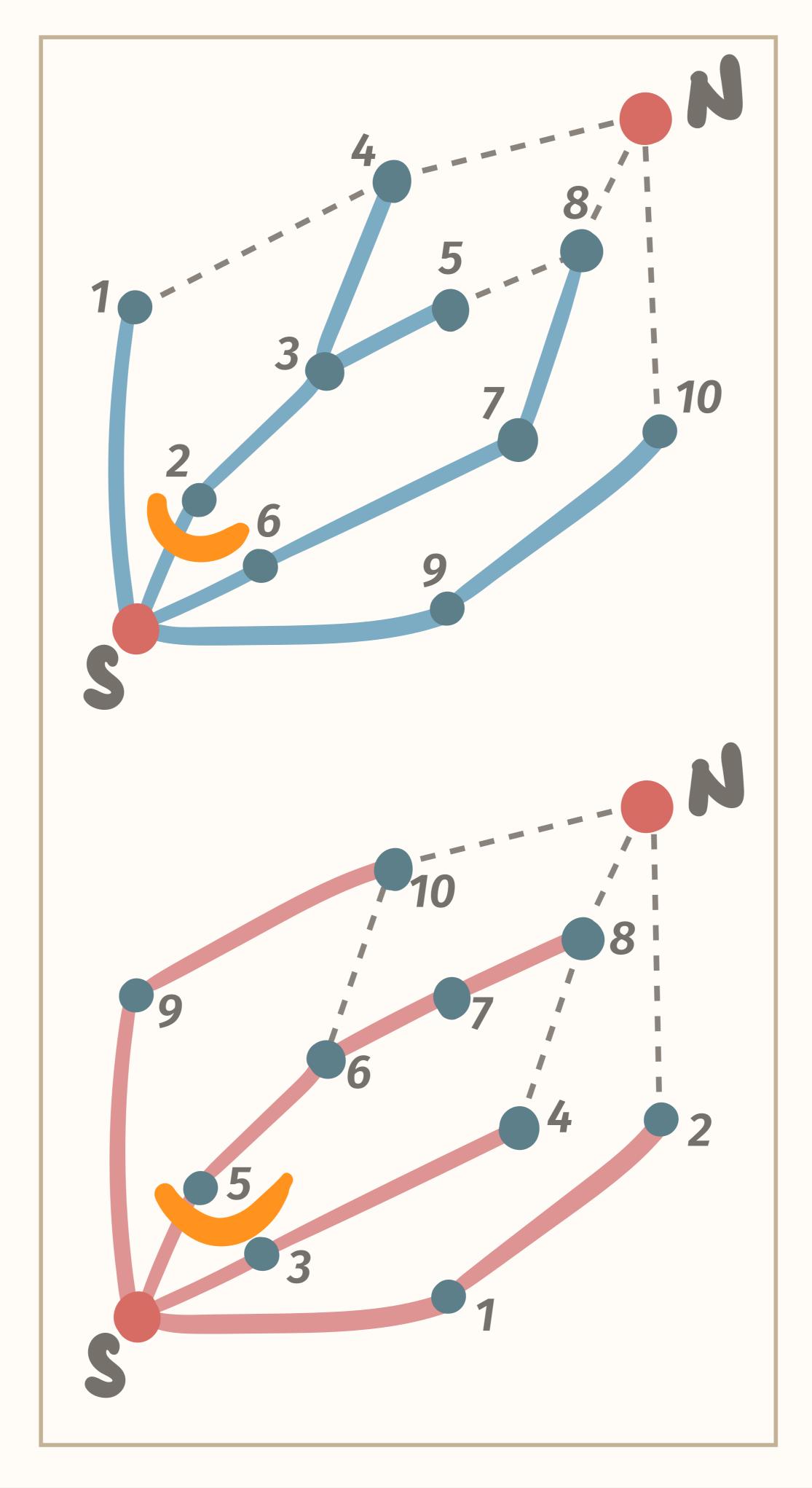


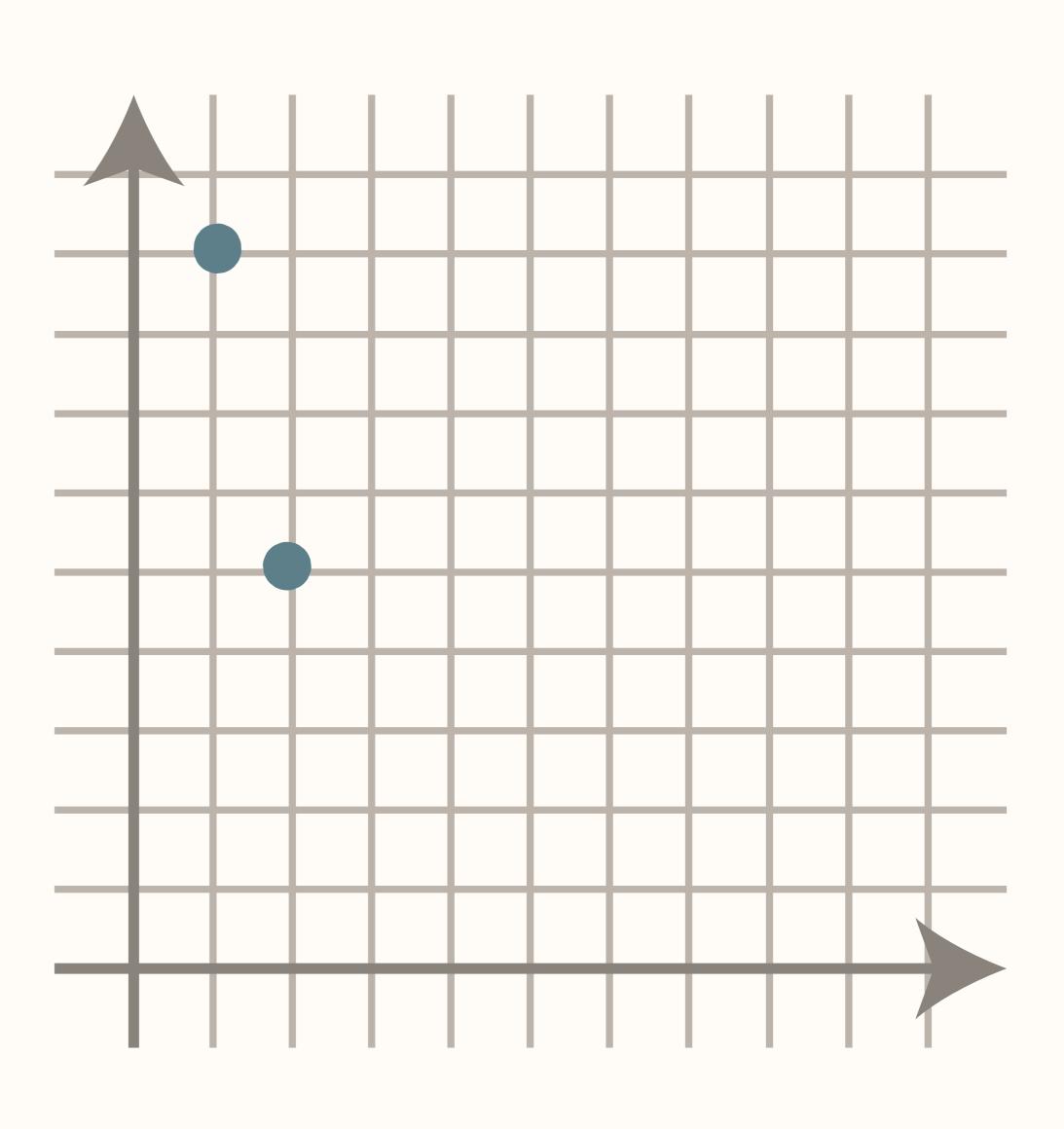




 $\pi: 1\rightarrow 9$



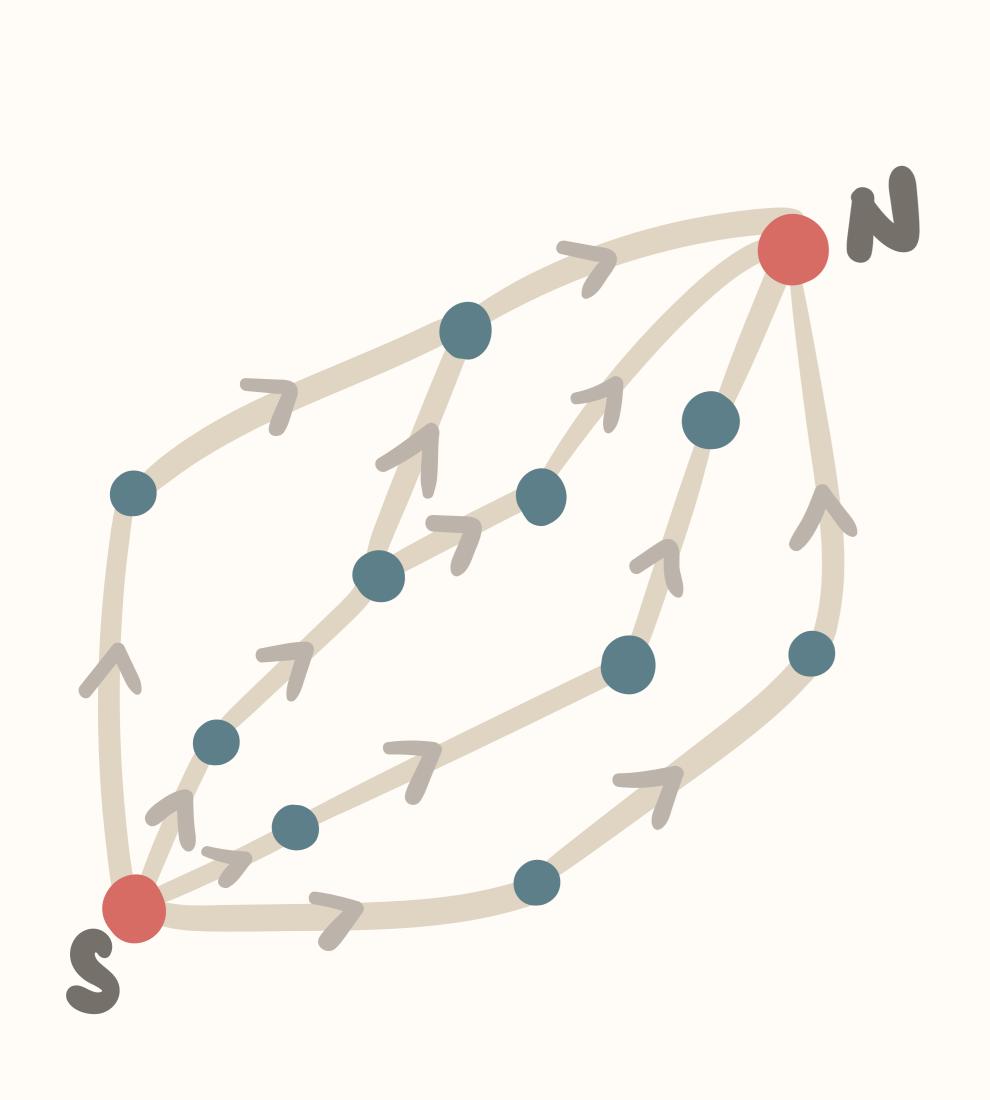


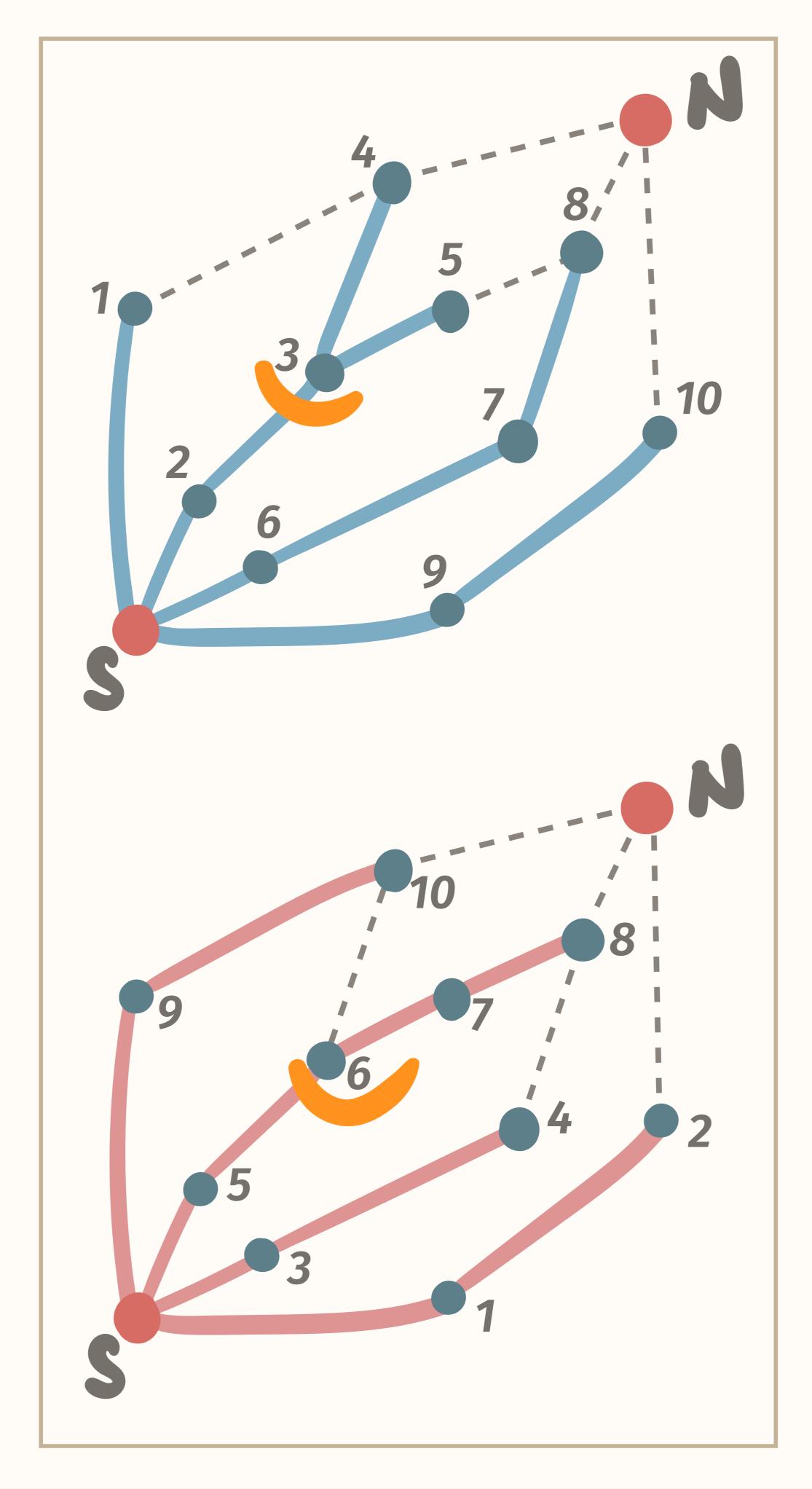


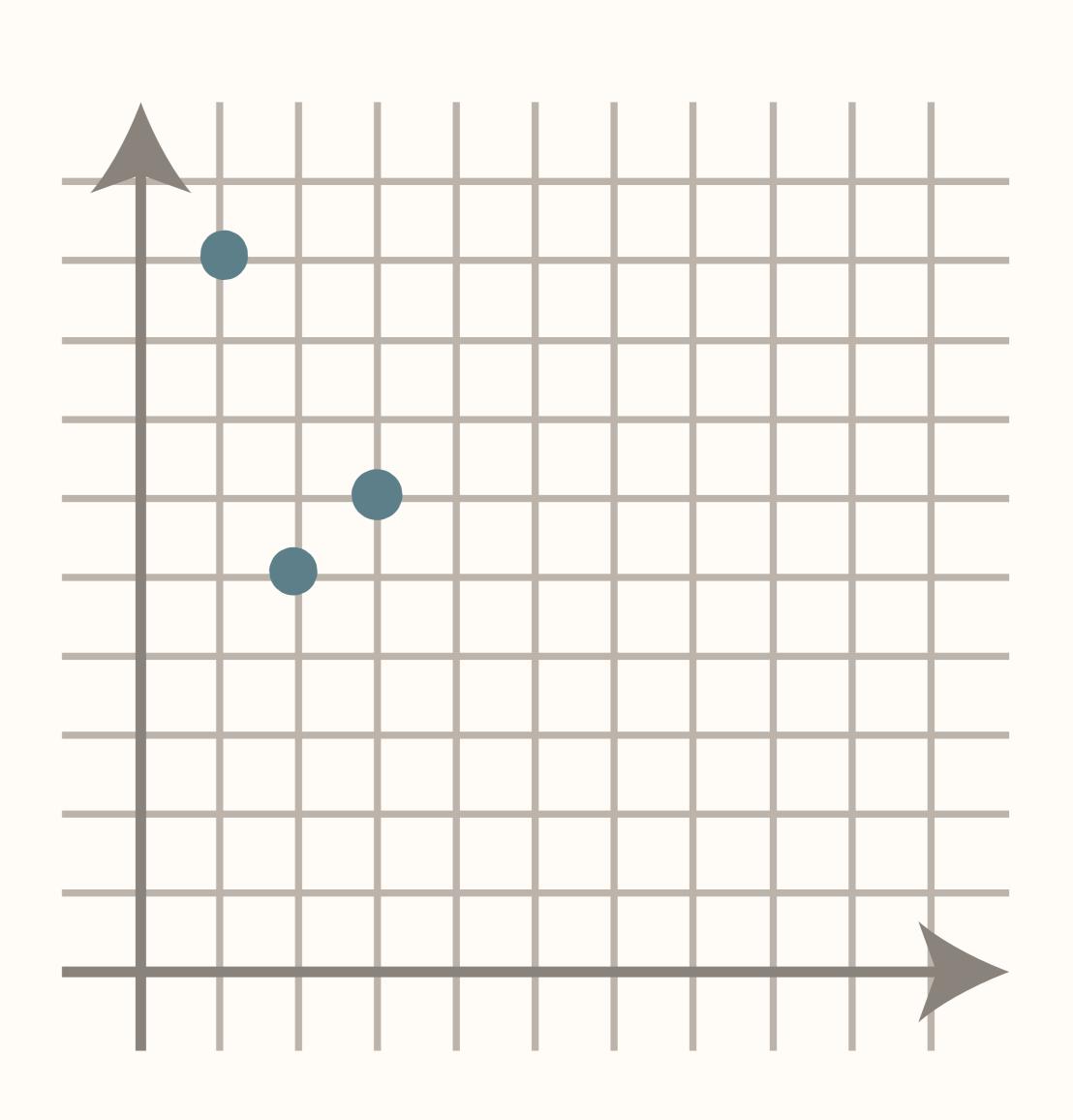
$$\pi: 1 \rightarrow 9$$

$$2 \rightarrow 5$$

Poset — Plane permutation

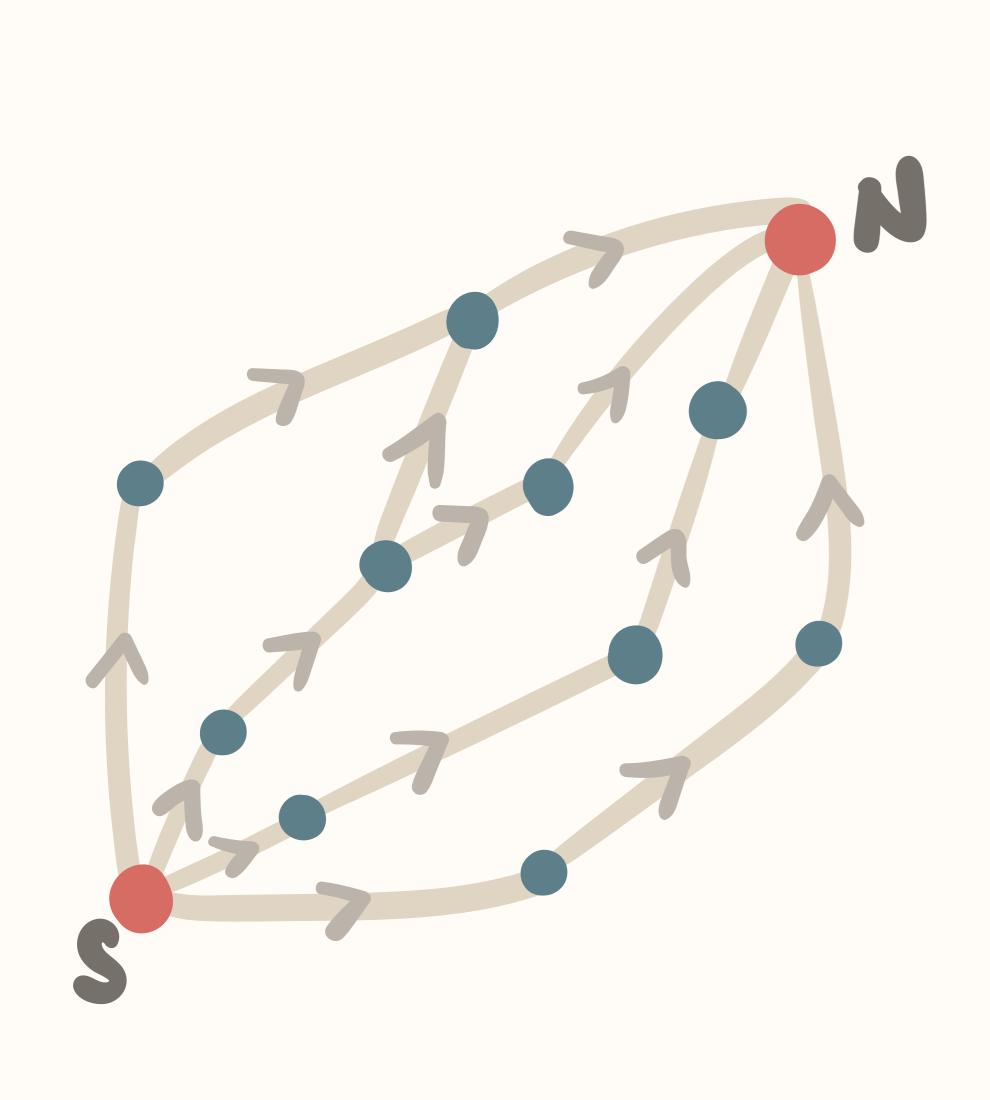


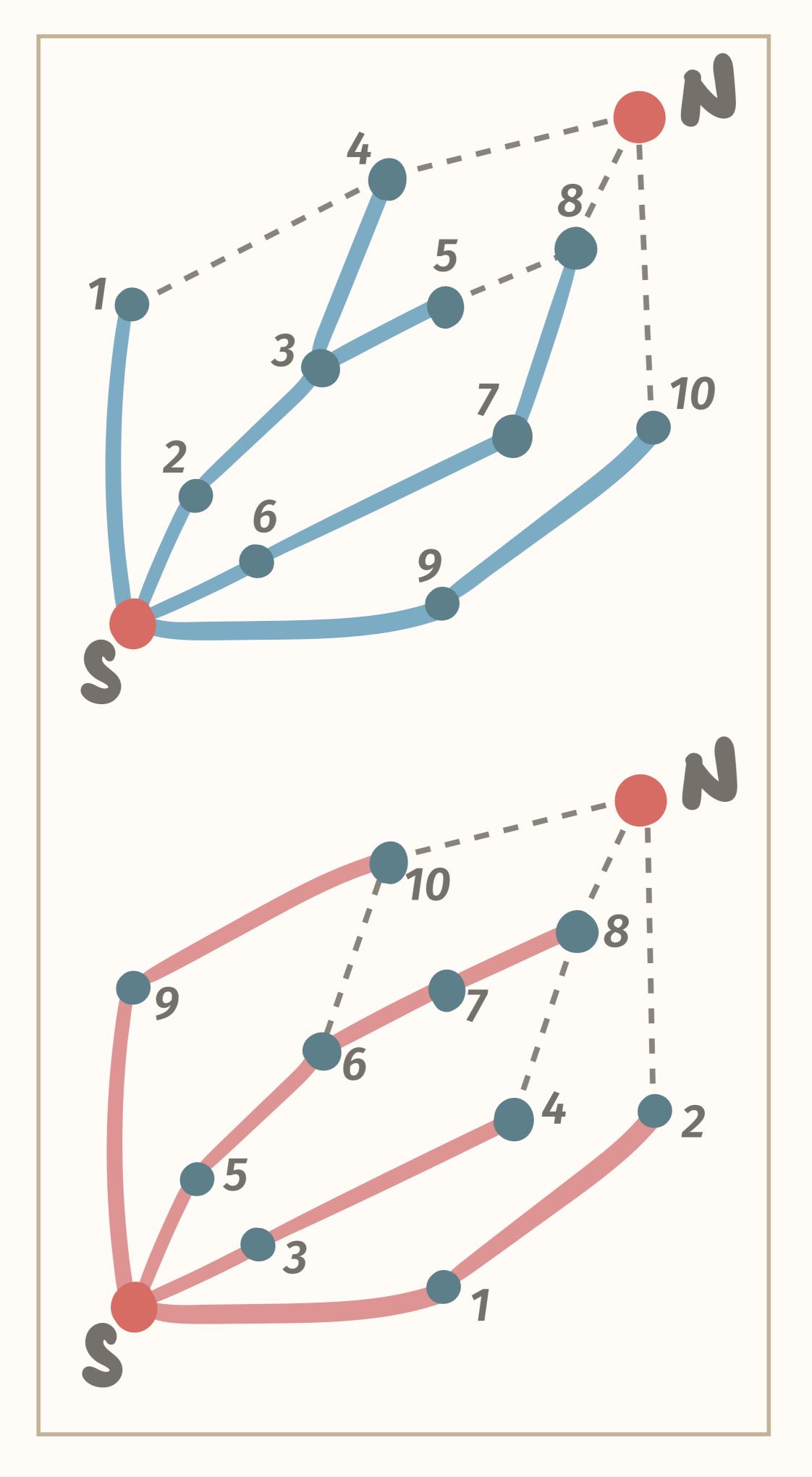


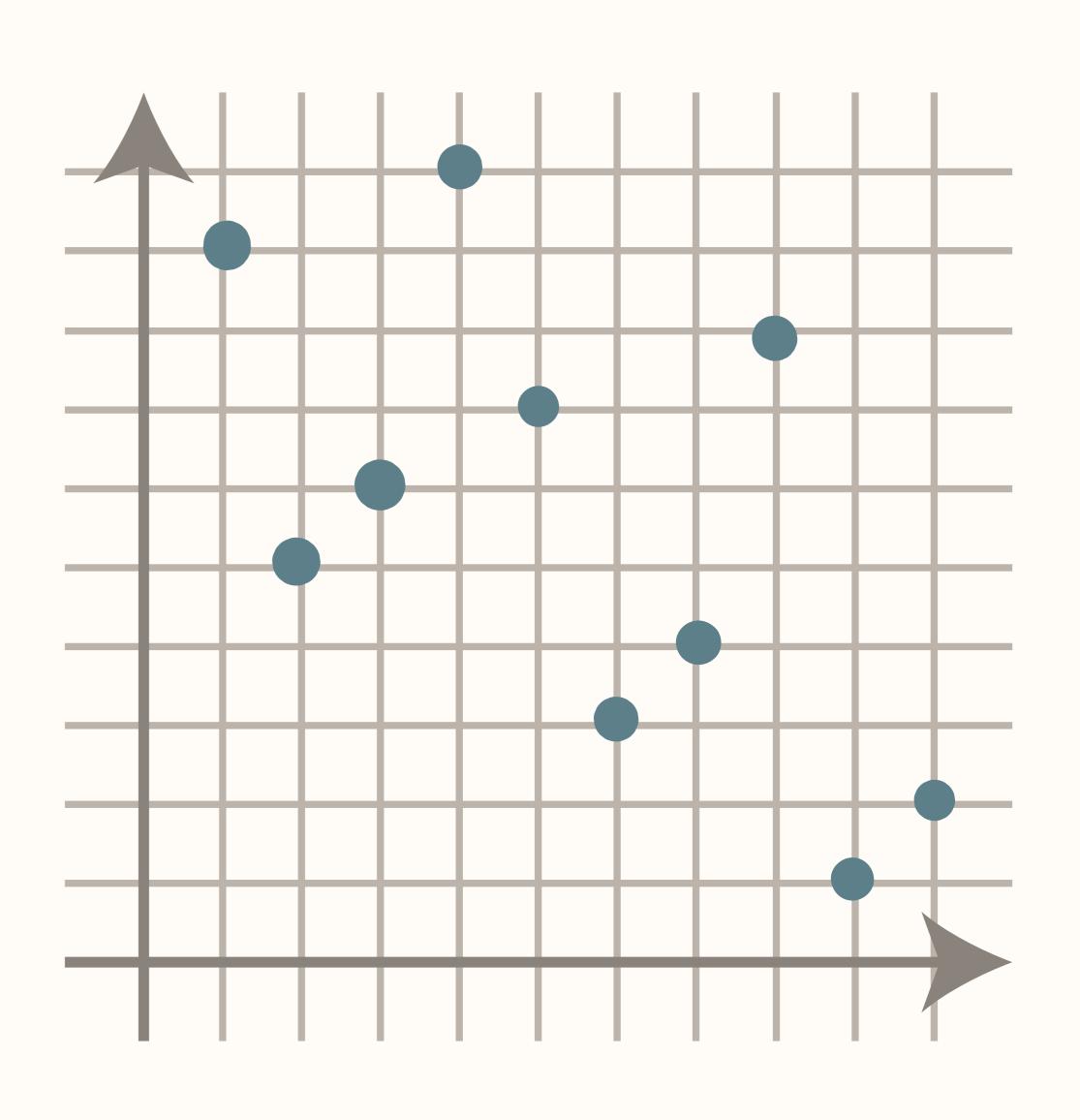


 $\pi: 1 \rightarrow 9$ $2 \rightarrow 5$ $3 \rightarrow 6$

Poset — Plane permutation

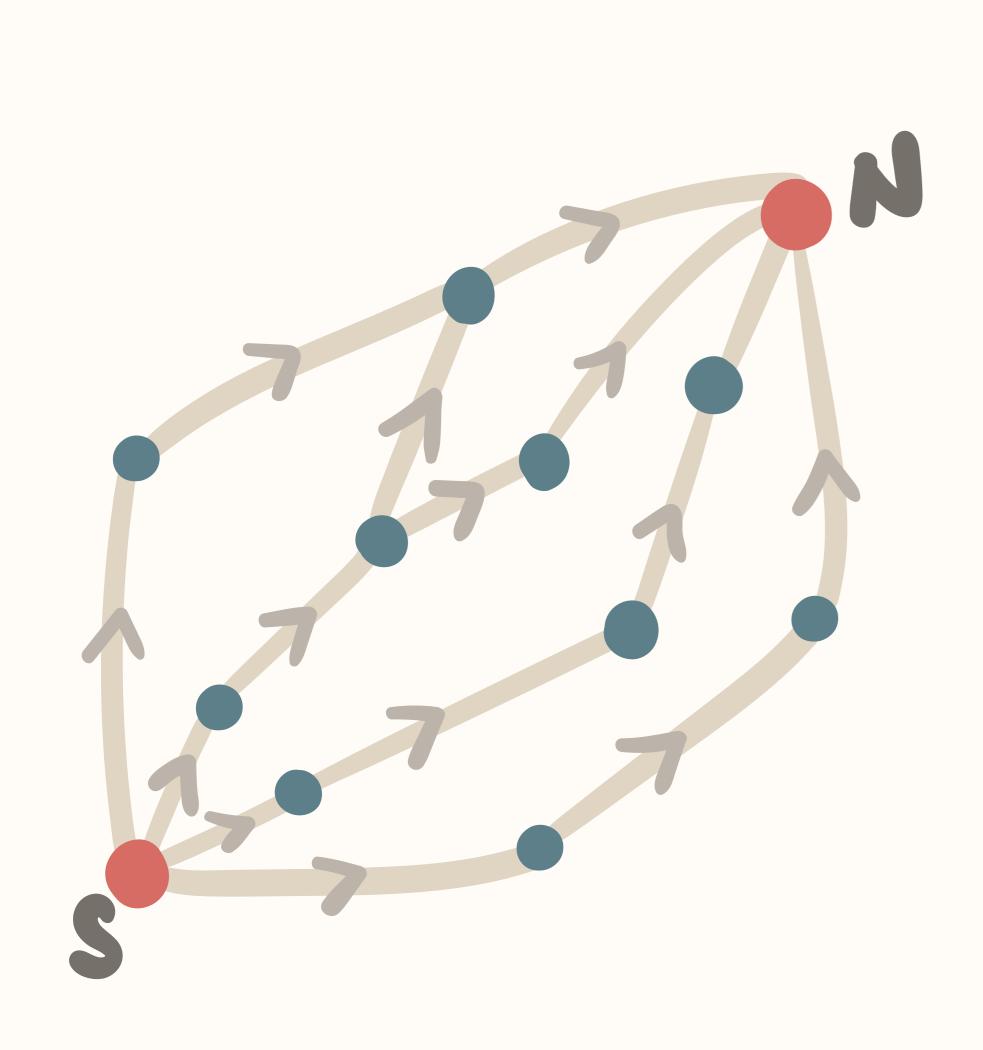


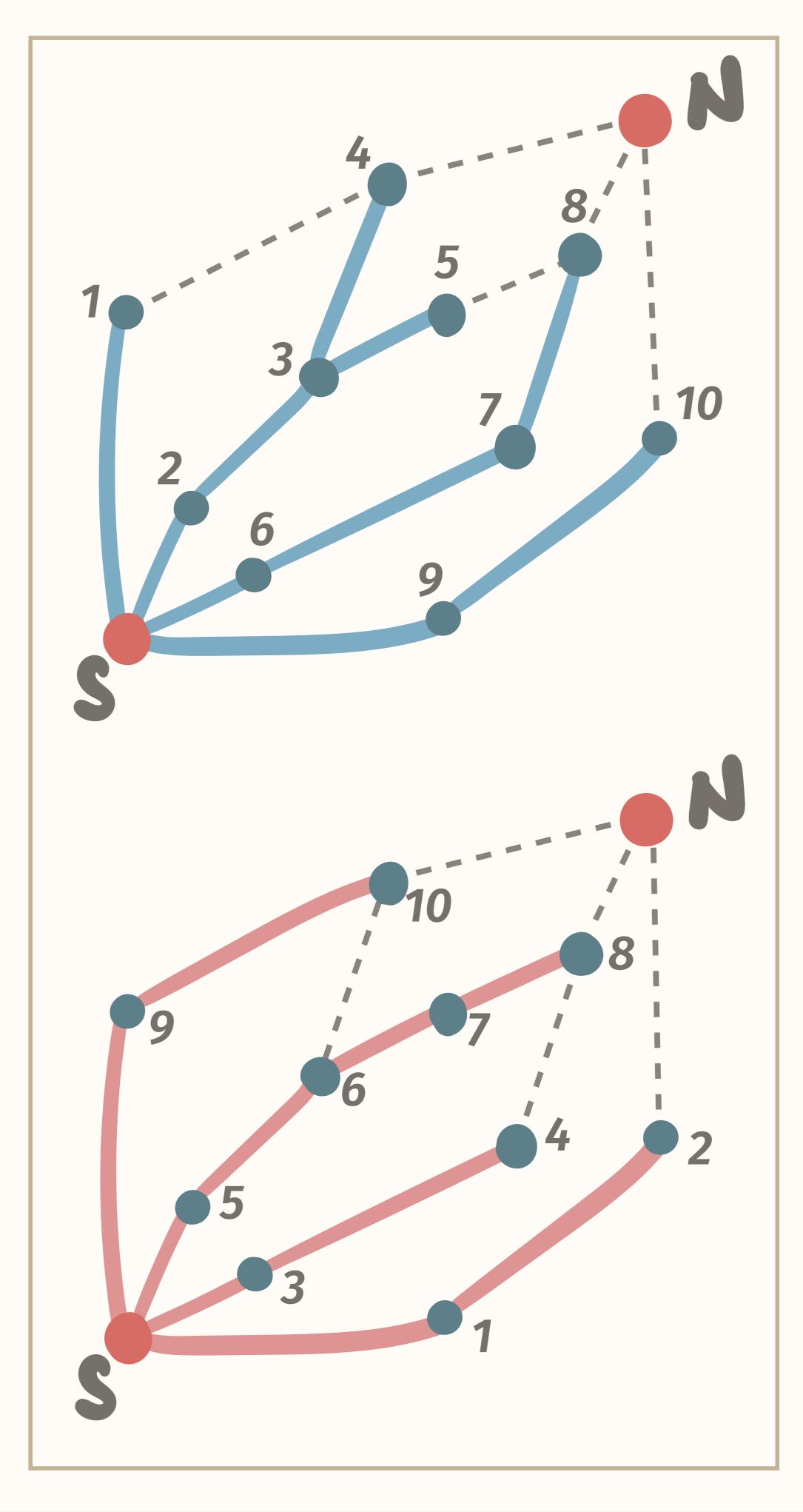




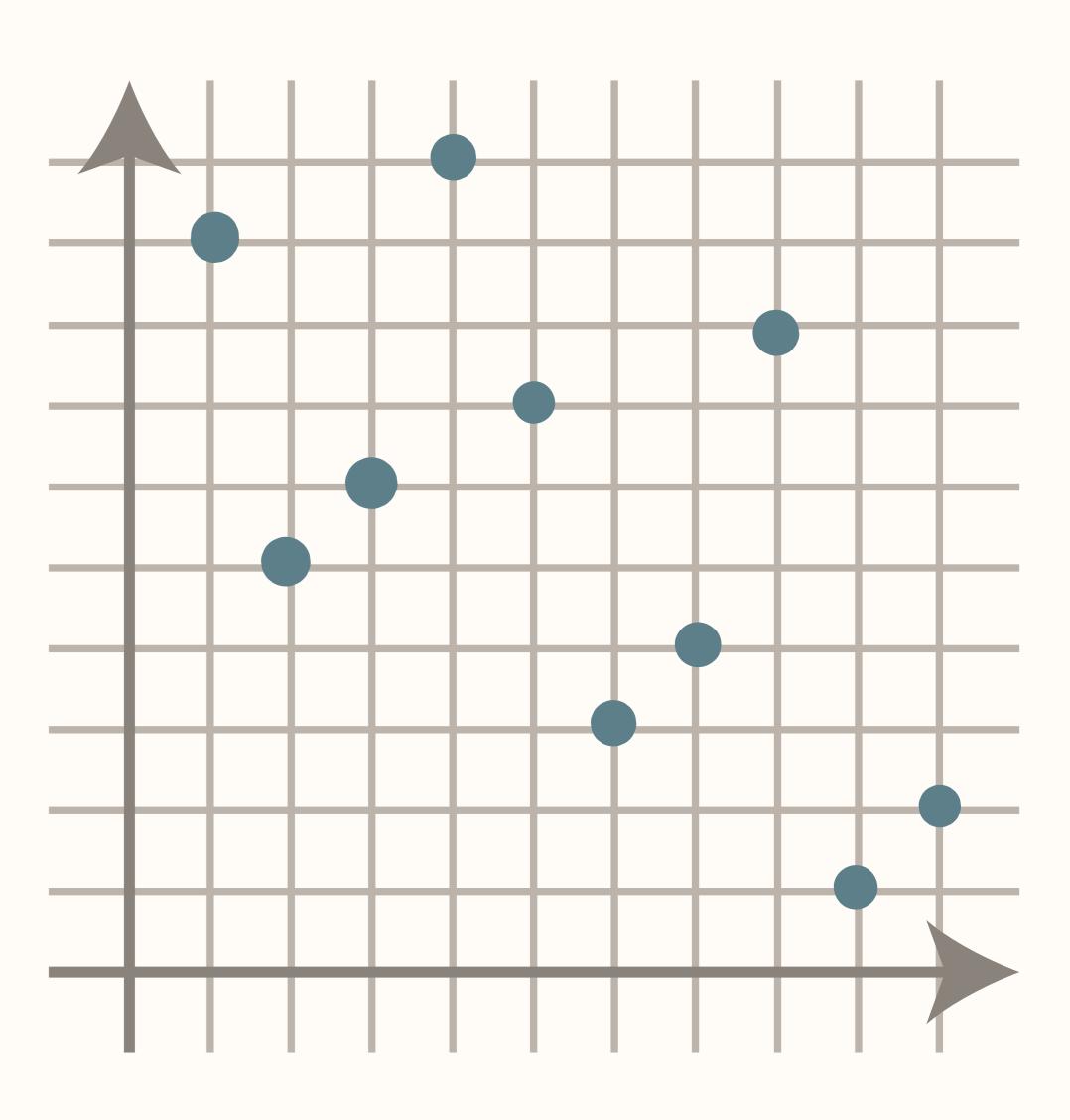
 π : 1 \rightarrow 9 6 \rightarrow \rightarrow 5 7 \rightarrow \rightarrow 6 8 \rightarrow \rightarrow 10 9 \rightarrow \rightarrow 7 10 \rightarrow

Poset — Plane permutation





Area requirement and symmetry display of planar upward drawings,
 G. Di Battista, R. Tamassia, and I. G. Tollis (1992)



 π : 1 \rightarrow 9 6 \rightarrow \rightarrow 5 7 \rightarrow \rightarrow 6 8 \rightarrow \rightarrow 10 9 \rightarrow \rightarrow 7 10 \rightarrow

Summumy

Maps and decorated maps

1. Bijection with quadrant tandem walks

- a. The KMSW bijection
- b. Plane bipolar posets
- c. Plane bipolar posets by vertices
- d. Transversal structures

2. Asymptotic enumeration

(Digression on plane permutations)

